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Abstract: This paper presents a simplified approach to the characterization of the hydrograph following the partial collapse of concrete
gravity dams. The proposed approach uses a simplified representation of the reservoir geometry and is based on the numerical solution of
shallow water equations to study the two-dimensional evolution of the water surface within the reservoir. The numerical results are made
dimensionless and reorganized so as to compute the peak discharge, the duration and the recession limb of the dam break hydrograph. The
proposed practical approach provides a quite satisfactory reproduction of the computed hydrograph for a wide set of realistic situations
that have been simulated in detail.

DOI: 10.1061/�ASCE�HY.1943-7900.0000231

CE Database subject headings: Dam failure; Shallow water; Numerical models; Simulation; Outflow; Hydrographs.

Author keywords: Dam failure; Dam breaches; Shallow water; Numerical simulation; Outflow.
Introduction

According to research on dam safety worldwide �Goubet 1979�,
the overall yearly probability of dam failure can be reckoned
around 1/50,000, so that the a priori probability of failure during
the lifetime of a dam, supposedly equal to 100 years, can be
estimated between 10−2 and 10−3. Anyway, the potential conse-
quences of this type of accident are so severe that every effort
must be made in order to reduce them further and to forecast, in a
better way, the expected flood extent and effect in the tailwater
areas. In order to cope with these important issues, most national
legislations prescribe dam safety regulations regarding not only
the construction and upgrading of dams but also their operation
and maintenance and emergency preparedness plans, so as to
minimize the potential harm to the public and damage to property.
In this direction, it is of primary importance to take into account
the conceivable failure scenarios applicable to the dam in order to
compute a realistic flood wave at the dam site that can be routed
downstream to outline and characterize the inundated area. The
two primary tasks in the hydraulic analysis of a dam break are the
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prediction of the reservoir outflow hydrograph and the routing of
this boundary condition through the tailwater areas. In this paper
we will restrict our attention to the first problem for nonerodible
dams.

The problem of the computation of the hydrograph following
the collapse of a dam has been a major concern since the end of
19th century. Whilst the first documented experimental dam break
case in a channel was probably investigated by Bazin �1865�,
Ritter �1892� derived an analytical solution of the one-
dimensional �1D� De Saint Venant equations for the case of in-
stantaneous removal of a barrage retaining a reservoir in a
frictionless, initially dry, horizontal channel with rectangular
cross section. Su and Barnes �1970� extended Ritter’s solution
considering the effects of different channel cross-sectional shapes.
The power-type expression that they introduced for the wetted
area, depending on the value of an exponent, is suitable to repre-
sent cross sections varying from rectangular to parabolic and tri-
angular shapes. To the writers knowledge, very few works
proposing new analytic advancement to this problem have been
presented afterwards �e.g., Sakkas and Strelkoff 1973; Wu et al.
1999�. On the other hand, significant advances have been made in
the numerical solution of De Saint Venant equations. Several pa-
pers have dealt with the detailed reconstruction of floods follow-
ing important dam failures, such as the Malpasset dam break
�e.g., Valiani et al. 2002�, the Gleno dam break �Pilotti et al.
2006�, and the Saint Francis dam break �e.g., Begnudelli and
Sanders 2007�. These modelling efforts show that, albeit under
the hydrostatic assumption, it is possible to provide a detailed and
reliable description of the hydrograph formation and propagation.

The analytic solutions that have been mentioned �Ritter 1892;
Su and Barnes 1970� have limited practical scope for the evalua-
tion of the hydrograph at the breach section. These solutions as-
sume an infinitely long reservoir with the consequence that the
discharge at the breach is constant in time. On the other hand, the
two-dimensional �2D� numerical simulation of a dam break case
always requires a great deal of information �e.g., the reservoir
bathymetry� and a considerable level of expertise. Often in prac-
tical applications both these requirements cannot be satisfied.
These considerations have motivated the introduction of sim-
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plified methodologies to deal with the problem of the breach-
outflow hydrograph characterization following a sudden dam
break. Usually, these methodologies couple a steady-state weir-
like relationship for the discharge to the continuity equation for
the volume of the reservoir and so neglect the role of inertial
terms on the outflow process, possibly overpredicting consider-
ably the outflow peak �e.g., Aureli et al. 2007�. Actually, in the
real dam break problem, part of the initial potential energy stored
in the head difference is transferred upstream in the negative
wave that accelerates water in the reservoir. Sometimes the
breach-outflow hydrograph is approximated as a triangle, where
the base represents the emptying time of the reservoir and the
height is estimated from the instantaneous peak outflow �e.g.,
Owen 1980� evaluated, e.g., by Ritter’s equation, often applied
under the simplified hypothesis of rectangular section.

Aureli et al. �2007� have recently proposed a simple procedure
that parameterizes the breach hydrograph on the basis of a nu-
merical solution of the dimensionless 1D De Saint Venant equa-
tions, in the case of a frictionless sloping bed with a cross section
shape described according to Su and Barnes’ geometry. This pro-
cedure satisfies the constraint on the volume actually stored
within the reservoir and requires input data usually available for
most man-made storages.

All these researches have assumed a total and sudden dam
break. Although there is general agreement that the latter hypoth-
esis is a good approximation to a process that usually evolves
very rapidly, there is clear evidence that for several types of dams
the failure can be, and usually is, partial. This is true for gravity
dams, when their stability is verified independently for each ver-
tical monolith. In these situations, assuming a total dam break
would result in an unrealistically high flood wave and therefore
the breach size is normally assumed to cover a multiple of mono-
lith widths �e.g., Owen 1980; ICOLD 1998; U.S. Army Corps of
Engineers �USACE� 1997�. Accordingly, the dam safety regula-
tions of several nations introduce the possibility that the reservoir
outflow hydrograph can be computed under the assumption of
partial dam break. This is the case, e.g., for Italian regulation,
where for certain types of dam the breach can be partial, but must
involve the highest elements of the structure with a minimum
breach area a�0.3 A0, being A0 the total initially wetted area of
the dam.

On the other hand, partial dam break has a peculiarity of its
own: it can be shown that the peak discharge in a partial dam
break is higher than that obtainable by using the Ritter equation,
although modified to take into account the actual shape of the
lower arch of the valley �e.g., Bukreev 2006�.

In spite of the importance of this topic, to our knowledge, no
satisfactory simplified procedure has been so far specifically de-
veloped for partial dam break hydrograph estimation. In order to
contribute to fill this gap, in this paper we study the emptying
process of partially breached reservoirs characterized by a cross
section whose geometry is based on Su and Barnes’ assumptions
and whose thalweg is uniformly inclined. The potential field of
variation of the parameters for this geometry has been identified
through the inspection of a wide range of different real site con-
ditions. The analysis of an extensive set of outflow hydrographs
obtained through numerical solution of the 2D De Saint Venant
equations on the basis of a dimensional analysis of the process,
suggests that they depend primarily on a limited number of non-
dimensional groups. This permits the expression of the discharge
hydrographs in a simplified fashion, while retaining the most sig-
nificant aspects of the process. By considering a wide set of real

bathymetries located in mountain areas, we show that the identi-
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fied functional dependence can be easily applied also to several
real situations by a simple procedure that requires data usually
available for most man-made reservoirs. When the valley geom-
etry is well represented by the hypotheses which are placed at the
basis of this proposal, the comparison of the synthetic hydro-
graphs, obtained through the application of the simplified proce-
dure presented in this paper, with the numerically computed ones,
shows a very satisfactory agreement.

Dimensionless Expression of the Hydrograph
Following a Sudden Partial Dam Break

The outflow hydrograph, due to the reservoir emptying following
a sudden dam break, has a shape that depends on the reservoir
bathymetry and on the breach geometry. These quantities deter-
mine both the overall volume and the discharge time evolution,
particularly during the initial phase of the process. In order to
derive a methodology that is as simple as possible, without losing
effectiveness, the valley geometry where the dam is located is
described as prismatic having a cross section area A represented
by a power-type expression �Su and Barnes 1970�

A = �h� �1�

where h=depth; and � and �=parameters which depend on the
cross-sectional shape. In addition, the valley longitudinal axis
should have a constant slope, as shown in Fig. 1. Although not
exhaustive, the type of geometric representation provided by
Eq. �1� is particularly effective in representing the “U” or “V”
shaped cross sections of glacial or fluvial mountain valleys be-
cause the cross section shape can be changed continuously with
� from rectangular ��=1� to parabolic ��=1.5� and triangular
��=2; see Fig. 2�. Although simplified, this scheme seems suit-
able to interpret the bathymetry of a large variety of mountain
reservoirs, as will be shown in the final part of this contribution.
For a reservoir described by Eq. �1� and whose thalweg has a

Fig. 1. Schematic reservoir bathymetry adopted in this paper �here
�=1.6�
slope S0=h0 /L0, where h0= initial water depth in the reservoir at
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the dam location; and L0= initial extent of the water surface, mea-
sured orthogonally to the dam �see Fig. 1�, consider a partial
collapse in an initially dry and infinitely long valley as a conse-
quence of the sudden removal of the central stripe of area a, taken
symmetrically with respect to the vertical symmetry plane of the
reservoir. If inviscid conditions are assumed, the resulting hy-
drograph at the breach can be described as a function of several
independent dimensional quantities

Q = f�t,�,�,L0,h0,a,g� �2�

where, in addition to the dependence on time t, the other charac-
teristic parameters express the dependence on
1. Valley shape: �, �, h0 /L0;
2. Initial water depth: h0;
3. Shape and extension of the breach: a, in addition to the

above mentioned � and � that describe the lower arch of the
breach; and

4. The acceleration due to gravity, g.
These parameters are mutually independent and are necessary and
sufficient for a complete definition of the phenomenon.

Eq. �2� can be rewritten in a dimensionless form. According to
the �-theorem, choosing h0 and g as basic quantities, one can
write a dimensionless expression �1 of the discharge Q, as

�1 �
Q

�h0
��gh0

���2� + 1

2�
�2�+1

= f� a

�h0
� ,

L0

h0
,�,

�

h0
2−� ,t� g

h0�

h0

L0
�

= f��2,�3,�4,�5,�6� �3�

Similar relationships can be written with reference to any other
dimensional property of the process, where the form of the func-
tion f will depend upon the nature of the property under investi-
gation. This conclusion obviously does not imply that f must
necessarily depend on all five of the dimensionless groups on the
right side. With respect to a particular property, they have to be
regarded merely as sufficient. As an example, if one considers the
dimensionless expression of the peak discharge Qp, it clearly does
not depend on �6.

The dimensionless expression �1 of the discharge Q in Eq. �3�
has been obtained by using the theoretical generalization of
Ritter’s solution for the discharge at the breach in the case of a
total collapse of the dam ��2=1� and horizontal infinitely long
bed ��3=�� provided by Su and Barnes �1970�

Q

�h0
��gh0

�� = � 2�

2� + 1
�2�+1

�4�

This equation is valid for t=0 also in the case of sloping bed.
However, the discharge is constant in time when the bed is hori-

Fig. 2. Shape of a reservoir cross section for � in the range of 1.2–2
zontal whilst it decreases if the slope is different from zero.
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�2 reflects the role of the breach area with respect to the
overall initial cross section, given by Eq. �1�. In the same way, if
one considers that in the geometry under consideration the celer-
ity of a long wave of small amplitude, c, is given by

c�h� =�g
A�h�
B�h�

=�g
�h�

��h�−1 =�g
h

�
�5�

being B�h�=free surface width in correspondence of depth h; then
�6 provides a significant dimensionless time including the ratio
between the reservoir length, L0, and the initial celerity at the
breach, c0.

As will be shown in the following, a better standardization of
the discharge is empirically obtained if one considers the dimen-
sionless discharge in the form:

�7 �
Q

�h0
��gh0

����2� + 1

2�
�2�+1�a/A0

�6�

Accordingly, one can write a symbolic relationship for the dimen-
sionless hydrograph at the breach, which is conceptually equiva-
lent to Eq. �3�

Q

�h0
��gh0

����2� + 1

2�
�2�+1�a/A0

= f� a

�h0
� ,

L0

h0
,�,

�

h0
2−� ,t� g

h0�

h0

L0
�

�7�

In the following, Eq. �7� has been simplified to limit the degrees
of freedom of the model. To this purpose, it is relevant to observe
that each dimensionless group reflects mostly the influence of the
characteristic parameter that appears only within it. Accordingly,
the breach area and the cross section shape are basically described
by �2 and by �4. The other shape parameter, �, appears within
�5 but, indirectly, also in �2 and �7.

Moreover, from the Su and Barnes’ solution Eq. �4�, in the
case of total collapse the discharge at the dam location is inde-
pendent of �5, being the influence of � on the process described
by the expression of the dimensionless discharge. Accordingly, it
seems reasonable to make the hypothesis that �5 plays a negli-
gible role also for a partial dam break.

In the same way, L0 appears directly in �3 but also within �6.
If all other variables are kept constant, L0 mostly influences the
wave peak and the emptying time. However, when L0 /h0 is not
small, the influence on the wave peak tends to disappear because
this is influenced by the area surrounding the breach, which is
only marginally affected by the valley slope. This is also con-
firmed by the theoretical results by Dressler �1958� who studied
the instantaneous and complete removal of a dam on a sloping
channel of infinite width, showing that the dimensionless hy-
drograph does not depend on �3. In conclusion, it seems possible
to make the hypothesis that the direct dependence of Eq. �7� on
the group �3 can be disregarded.

Under the abovementioned assumptions it is possible to sim-
plify the dimensionless relationship Eq. �7� as

Q

�h0
��gh0

����2� + 1

2�
�2�+1�a/A0

= f� a

�h0
� ,�,t� g

h0�

h0

L0
� �8�

that provides a direct dependence of the dimensionless flood wave
following a sudden partial dam break on the dimensionless time,

when � and the breach ratio a /A0 are kept constant.
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Numerical Simulation of Reservoir Emptying
Process

In order to verify the validity and scope of Eq. �8�, we have made
a careful comparison with the results of detailed numerical simu-
lations. To this purpose we have studied the emptying process of
many reservoirs whose bathymetry is described by Eq. �1�, when
the dam bounding the reservoir is suddenly removed to form a
breach as shown in Fig. 1. Although the outflow process follow-
ing a dam break presents strongly three-dimensional �3D� features
in the neighbourhood of the breach, a useful and effective ap-
proximation of the process is obtained by using 2D De Saint
Venant equations, according to the assumption of the hydrostatic
pressure distribution in the vertical. Disregarding Coriolis and
wind forces, the shallow water equations �SWEs� can be written
in a conservative vectorial form as

Ut + Ex + Fy + S = 0 �9�

where subscripts denote partial derivatives, being

U = � h

uh

vh
� ; E =�

uh

u2h +
1

2
gh2

uvh
� ; F =�

vh

uvh

v2h +
1

2
gh2�

S = � 0

− gh�S0x − Sfx�
− gh�S0y − Sfy�

� �10�

S0x = −
�z

�x
; S0y = −

�z

�y
; Sfx =

u�u2 + v2

�2h
; Sfy =

v�u2 + v2

�2h

�11�

where x, y=orthogonal space coordinates on a horizontal plane
and t is the time; u, v=velocity components along x- and
y-directions; and S0x and S0y the bottom slope, Sfx and Sfy the
slope friction along the same directions. The Chezy’s coefficient
� can be computed using Manning’s roughness coefficient.

In order to solve Eq. �9�, a solver has been implemented based
on the well known MacCormack finite difference scheme �Fen-
nema and Chaudhry 1990�. This solver has been carefully vali-
dated using the available classic test cases �e.g., Ritter’s and
Stoker’s cases, steady flow through a sequence of a contraction
expansion and on a bump, circular dam break, etc.�, always ob-

Fig. 3. �a� Surface plot of circular dam break �initial water height
0.25 m; �b� comparison between profiles for t=0.693 s
taining very satisfactory results. As an example of a 2D test case,
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in Fig. 3�a� we show the results obtained in the case of a radially
symmetric dam break centered in a square initially wet domain
�Alcrudo and Garcia Navarro 1993�. Fig. 3�b� shows the compari-
son between axis and diagonal profiles of the computed water
surface; as one can observe, the circular symmetry is preserved
very well and shocks are well resolved.

In view of its application presented in the following section, it
might be interesting to validate the numerical code also with re-
spect to some laboratory experiments regarding dam break in
sloping channels. In the following, we have considered the set of
experiments accomplished by the U.S. Army Corps of Engineers
Waterways Experiment Station �WES� �1960� in conditions of
minimum resistance. This set of experiments is particularly inter-
esting because it regards both complete and partial dam break.
The experiments were accomplished in a wooden rectangular
flume, with Manning’s n equal to 0.009 s /m1/3. The flume is 4 ft
wide and 400 ft long and is constructed on a slope equal to 0.005
ft/ft, with the dam located midway of its length. The dam was
suddenly removed at time zero, with an initial water level at the
upstream side of 1 ft. Observations regarding stage-time hydro-
graphs were made both upstream and downstream of the dam, so
providing experimental information on the reservoir emptying
process that can be numerically reproduced. In this simulation as
well as in all the following dam break cases, we have adopted a
downstream far-field boundary condition, according to which the
gradient of conserved quantities is set to zero. A free slip condi-
tion has been applied along solid walls, setting to zero the normal
flow velocity component.

Due to space constraints, here we limit our attention to experi-
ment 3.1 of WES, characterized by initial dry bed condition and
full depth breach with ratio a /A0=0.3, close to the lowest value
admitted in dam break studies by some national regulations.
Fig. 4 shows a comparison between measured and computed
stage-time hydrographs within the reservoir at distance 40, 120,
172, and 199 ft from upstream. Since the experimental depths
published by WES were obtained by averaging across each sec-
tion, the same procedure was adopted for our numerical results.
Fig. 5 shows a comparison between experimental and numerical
discharge hydrographs at the breach. As one can observe, there is
a satisfactory agreement between experimental data and numeri-
cal results. However, a difference is noticeable in the first 40
seconds, where the experimental hydrograph is characterized by
an almost steady discharge, while the numerical hydrograph
shows a decreasing pattern, as one could expect considering the

inside dam and 1 m outside; dam radius is 11 m and cell side is
is 10 m
theoretical solution provided by Dressler �1958� for the case of
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total dam break in a sloping channel. Here one must observe that
the experimental hydrograph has been obtained by WES through
numerical differentiation of a cumulative “volume of outflow as a
function of time” curve, computed using measured stage data
�Table 3 of WES 1960�. By repeating the same procedure one can
observe that in reality the initial part of the discharge hydrograph
is uncertain because extremely sensitive to the type of differen-
tiation adopted.

Accordingly, as a crosschecking, we have computed the hy-
drograph also using a 3D commercial code, which solves Rey-
nolds equations using a biphasic volume of fluid technique �VOF�
�Hirt and Nichols 1981�. Fig. 5 shows that the 2D and 3D ap-
proaches are in good agreement also in the initial phase. This
comparison also provides a confirmation that, as far as the dis-
charge hydrograph is concerned, the differences related to a better
description of the flow field around the breach are, from an engi-
neering point of view, negligible. Similar conclusions have been
obtained in the case of total dam break also by other writers �e.g.,
Mohapatra et al. 1999� who have shown that vertical acceleration
affects only the first instants of the process. On the other hand, the
computational burden implied by the two types of simulation is
extremely different: the ratio of the computational times for the
3D and 2D simulations shown in Fig. 5 is approximately 10.

In order to test the effect of grid spacing �x on the numerical
solution, Fig. 6 shows the variation of the peak discharge for
increasing w /�x �being w the breach width�. As one can observe,
a good convergence can be obtained for w /�x�10. This condi-
tion has been satisfied for all the simulations. Finally, it might be

Fig. 4. Measured �WES� and computed stage-time hydrographs
within the reservoir at four different distances �in feet� from up-
stream; h0 is the initial stage at the breach

Fig. 5. Comparison between measured hydrograph �WES�, MacCor-
mack 2D, and VOF 3D simulations for a Manning’s coefficient equal
to 0.009 m−1/3 s
JOURN

Downloaded 17 Sep 2010 to 192.167.23.210. Redistrib
interesting to consider the effect of friction on the discharge hy-
drograph at the breach. Fig. 7 shows the hydrographs obtained for
Manning’s n=0.0167, 0.0125, 0.009, and 0 m−1/3 s using a 2D and
3D approach, evidencing that friction plays a minor role on the
initial phase of the emptying process. It does not affect the peak
discharge but contributes to smoothen and extend the tail of the
hydrograph. In particular, the simulation accomplished in smooth
condition shows a wavy pattern along the tail that is a conse-
quence of the propagation of negative waves within the reservoir
and of their reflection on the upstream boundary and on the re-
maining part of the dam. These fluctuations are damped by resis-
tance.

Synthesis of Numerical Results

In order to obtain a significant base of numerical results for test-
ing the validity of Eq. �8�, the De Saint Venant solver has been
used to model the emptying process caused by a partial dam break
in a reservoir whose geometry is described by Eq. �1�. More than
200 different numerical cases have been considered for testing the
conclusions of Section 2 and the corresponding 2D bathymetries
have been described using digital elevation models with square
cells of 1 m side.

To identify the range of variation of parameters �, �, and S0

typical of real reservoirs, the topography of many mountain val-
leys located in the Italian Alps, eligible sites for potential reser-
voir construction, has been analyzed. Accordingly, the � variation

Fig. 6. Peak discharge for MacCormack 2D simulations �Qp
s � as a

function of the number of cells on the breach. Qp
m is the measured

�WES� peak discharge and w is the width of the breach.

Fig. 7. Discharge hydrographs at the breach obtained from VOF 3D
and MacCormack 2D simulations for different values of Manning’s
coefficient
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range was found between 1.2 and 2 �see Fig. 2�, whilst � varies
between 1 and 120 m2−�. As far as the slope S0 is concerned, we
have decided to consider a range between 1 and 30%, because
higher slopes would imply severe limitations to the upstream
stored volume �limiting the economic interest of the reservoir�,
and would violate one of the hypothesis at the basis of Eq. �9�.

Within these parameter variation ranges, we have simulated
sudden partial dam breaks with breach ratios a /A0=1, a /A0

=0.75, a /A0=0.5, a /A0=0.3, and a /A0=0.25, being A0=�h0
�.

Considering that the primary effect of resistance is detectable
only on the tail of the discharge hydrograph and the difficulty of
predicting the roughness of real reservoirs, the simulations have
been accomplished in smooth condition.

All the breach hydrographs, which are the main results of the
numerical simulations, when made dimensionless according to
Eq. �8� for given values of � and a /A0, show a similar pattern, so
confirming the conclusions of Section 2. An example is given by

Fig. 8 where the symbols Q̄ and t̄ have been used respectively for
the dimensionless discharge ��7� and time ��6� of Eq. �8�.

The numerical results show that the dimensionless peak dis-
charge Qp is independent from �, not only in the case of total dam
break �as required by Su and Barnes’ theoretical solution� but also
when a /A0	1, so confirming the effectiveness of the standard-
ization given by Eq. �6�. Accordingly, the peak discharge at the
breach is essentially a function of �2=a /A0 only and can be
expressed as

Fig. 9. Dimensionless peak discharge obtained by 2D simulations as
a function of � and of the breach ratio a /A0

Fig. 8. Set of dimensionless hydrographs at the breach for different
S0 and � values �a /A0=0.3; �=1.5�
698 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / OCTOBER 2010
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Qp �
Qp

�h0
��gh0

����2� + 1

2�
�2�+1�a/A0

= k�a/A0� �12�

where k�a /A0�=a priori unknown function �that can be identified
on the basis of the numerical results� and where k�1�=1 for con-
sistency with Eq. �4�. This is made evident by Fig. 9, where the
average values of Qp, obtained by processing the ensemble of the
dimensionless numerical hydrographs in correspondence of each
�� ,a /A0� pair, are represented as a function of the breach ratio
a /A0 and, parametrically, of �. All the lines corresponding to the
different � values tend to collapse into a single line. Their average
values are listed in Table 1 and identify the unknown function
k�a /A0� of Eq. �12�. In a similar way, the average reservoir emp-
tying time tf has been obtained. These values are listed in Table 2
and graphically shown in Fig. 10.

Eq. �8� suggests and the numerical results confirm that when
a /A0 and � are assigned all the hydrographs show a similar pat-
tern �see Fig. 8�. Accordingly, this pattern could be approximated
by a single function that could be regarded as a synthetic dimen-
sionless hydrograph. For simplicity, a polynomial model, whose
coefficients can be easily determined on the basis of some simple
conditions, has been considered. In particular, best results have
been obtained with a fourth degree polynomial expression

Q̄�t̄� = 1
2b4t̄4 + 1

2 �b3 + c3�t̄3 + 1
2 �b2 + c2�t̄2 + 1

2 �b1 + c1�t̄ + 1
2 �b0 + c0�

�13�

obtained as the average value of another fourth degree and third
degree polynomial expressions

Q̄�t̄� = b4t̄4 + b3t̄3 + b2t̄2 + b1t̄ + b0 �14�

Q̄�t̄� = c3t̄3 + c2t̄2 + c1t̄ + c0 �15�

The coefficients bi, which identify Eq. �14�, can be computed by
imposing the following five conditions. First of all, although in
reality the peak discharge of numerical hydrographs Qp occurs
very close but after the onset of the dam break, we have supposed
that this value occurs instantaneously, by imposing

Table 1. Dimensionless Peak Discharge as a Function of the Breach
Ratio a /A0

Variable Values

a /A0 �−� 1 0.75 0.5 0.3 0.25

k�−� 1 0.6173 0.3494 0.1743 0.1383

Table 2. Dimensionless Reservoir Emptying Time as a Function of � and
of the Breach Ratio a /A0

�

a /A0

1 0.75 0.5 0.3 0.25

1.2 3.1030 3.0940 5.2477 8.9995 11.1671

1.3 3.0133 3.0027 4.2457 7.7418 9.8093

1.4 2.9262 2.9206 3.9010 6.6144 7.9905

1.5 2.8400 2.8341 3.6997 5.9528 7.2771

1.6 2.7699 2.7620 3.3281 5.5407 6.4967

1.7 2.7012 2.6945 3.1172 5.1902 5.7273

1.8 2.6276 2.6231 2.8326 4.8961 5.4531

1.9 2.5656 2.5566 2.7897 4.3643 5.2446

2 2.4997 2.4741 2.4819 3.9346 5.0603
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1. Q̄=Qp when t̄=0.
The second condition is

2. �Q̄ /�t̄=0 when t̄=0.
The third and fourth conditions are similar but referred to the
reservoir emptying time tf, when the discharge tends to zero

3. Q̄=0 when t̄= tf.

4. �Q̄ /�t̄=0 when t̄= tf.
The fifth condition is based on mass conservation. Let V0 and

V̄0 be the dimensional and dimensionless average volume
initially stored within the reservoir

V̄0 =
V0

�h0
�����2� + 1

2�
�2�+1�a/A0 1

��L0

�16�

the final condition dictates that the integral of the polynomial
expression is equal to the available volume

5. 	0
tfQ̄�t̄�dt̄=V0.

By imposing these five constraints the linear system �17� can
be easily obtained, whose solution is the set of coefficients bi of
Eq. �14�



b0 = Qp

b1 = 0

b4tf
4 + b3tf

3 + b2tf
2 + b1tf + b0 = 0

4b4tf
3 + 3b3tf

2 + 2b2tf + b1 = 0
1
5b4tf

5 + 1
4b3tf

4 + 1
3b2tf

3 + 1
2b1tf

2 + b0tf = V0

� �17�

The other set of coefficients ci for Eq. �15� is computed by im-
posing constraints 1, 3, 4, and 5, so obtaining the system

Fig. 10. Dimensionless reservoir emptying time obtained by 2D
simulations as a function of � and of the breach ratio a /A0

Fig. 11. Comparison between the numerical set of dimensionless hyd
�=1.3; �b� �=1.9
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c0 = Qp

c3tf
3 + c2tf

2 + c1tf + c0 = 0

3c3tf
2 + 2c2tf + c1 = 0

1
4c3tf

4 + 1
3c2tf

3 + 1
2c1tf

2 + c0tf = V0

� �18�

It is relevant to observe that the two simplified hydrographs pro-
vided by the third and fourth order polynomials are usually very
similar, like in the case shown in Fig. 14, where the three poly-
nomials in Eqs. �13�–�15� are plotted versus experimental results.
In other cases, the advantage provided by one of two polynomials
in Eqs. �14� and �15� is more evident, being difficult, however, to
identify a priori which one performs better. Accordingly, with the
aim of providing a general simplified procedure, the overall best
results have empirically been obtained by using an average of the
two polynomials.

Fig. 11 presents, for two different values of �, a comparison
between the five variation bands of hydrographs obtained by 2D
numerical simulation for a /A0=1, 0.75, 0.5, 0.3, 0.25, and the
polynomial-model hydrographs Eq. �13�. Each variation band has
been built by considering, for each value of the dimensionless
time, the minimum and the maximum dimensionless discharge
observed in the numerical hydrographs at fixed a /A0. In order to
make each figure more easily readable, we plotted the hydro-
graphs according to the dimensionless discharge

Q� �
Q

�h0
��gh0

�� �19�

in place of expression �6�. Actually, expression �6� would imply

that Q̄=1 when t̄=0, irrespective of � and a /A0, so that all the
hydrographs in Fig. 11 corresponding to different values of a /A0

would tend to merge together in the region around the peak, mak-
ing very difficult their intercomparison. If � is assigned, expres-
sion �19� and �6� differ only for a scaling factor that is a function
of a /A0.

Fig. 11 suggests two general observations. First, the width of
each variation band is always rather small, so confirming the va-
lidity of Eq. �8�. In addition, the polynomial hydrograph Eq. �13�
provides a very good approximation to the average trend within
each band.

Identification of a Simplified Methodology
to Characterize the Hydrograph Following
a Sudden Partial Dam Break

Whilst it is required that the reservoir bathymetry reasonably
complies with the geometrical hypothesis which are at the basis

hs and their polynomial approximations for different a /A0 values: �a�
rograp
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of the proposed procedure, the only information that is required
for the application of this methodology is the stage-volume rela-
tionship, the initial water depth h0 within the reservoir and the
corresponding wetted area at the dam cross section, A0. Finally,
one must know the area a of the breach, in order to establish the
corresponding ratio a /A0.

The identification of the hydrograph at the dam section follow-
ing a sudden and partial collapse can be accomplished by follow-
ing a few simple steps:
1. First of all, it is straightforward to show that the volume

initially stored within a reservoir like the one shown in Fig. 1
is given by

V0 =�
h0

0

−
�h�

S0
dh =

�

S0�� + 1�
h0

�+1 �20�

accordingly, the stage-volume curve is

Fig. 12. Comparison between measured �WES� and computed
dimensionless peak discharge as a function of the breach ratio a /A0

Fig. 13. Convergence of the flow field a
700 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / OCTOBER 2010
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V�h� =
�

S0�� + 1�
h�+1 = 
h�+1 �21�

On the basis of the real stage-volume curve the two param-
eters � and 
 can be easily obtained by a least squares ap-
proximation.

2. By considering the initial wetted area at the dam cross sec-
tion, A0, and the computed � value, Eq. �1� immediately
provides �. By substitution in Eq. �21�, the equivalent slope
S0 of the reservoir thalweg can be computed.

3. By using the selected a /A0 ratio, the discharge Q0

Q0 = �h0
��gh0� 1

��
� 2�

2� + 1
�2�+1�a/A0

�22�

and the time t0

t0 =�h0�

g

L0

h0
�23�

needed to compute dimensionless time and discharge accord-
ing to Eq. �8�, can be obtained.

4. By linear interpolation of the data in Tables 1 and 2 �other-
wise by Figs. 9 and 10�, the value of Qp and tf can be ob-

tained. The value of the dimensionless volume V̄0 has to be
calculated by dividing the initially stored volume within the
reservoir, V0, by the product between Q0 and t0 �Eq. �16��.
Here the value V0 is provided by the real stage-volume curve.

5. Systems �17� and �18� can now be solved to obtain the pa-
rameters of the dimensionless polynomial hydrograph Eq.
�13�. It is now straightforward to derive the dimensional sim-
plified hydrograph Q�t�.

the breach at t=1 s after the dam break
round
ution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



Discussing the Proposed Procedure and Testing
Its Predictive Capability

Considering that it is extremely difficult to provide an accurate
measurement of the discharge hydrograph following a real dam
break case, in order to test the effectiveness of the proposed ap-
proach, one can resort only to laboratory results. The WES set of
hydrographs cannot be used because derived in a channel having
a slope �0.005 m/m� that is 1/2 than the minimum one explored in
this paper. However, the data regarding the peak discharge can be
used for the validation because they are largely unaffected by
channel slope and roughness. On the basis of its experiments
Schoklitsch �1917� proposed the following equation for peak dis-
charge in the case of the full depth partial width breaches in
rectangular channel:

Qp

A0
�gh0

=
8

27
� a

A0
�3/4

�24�

This equation was confirmed by WES �1960� and can be com-
pared with the more general Eq. �12�. Although the rectangular
case is outside of the numerical field of investigation explored in
our work �1.2���2�, the dimensionless peak discharge Qp given
by Eq. �12� is practically independent from � �see Fig. 9�. Ac-
cordingly, it seems legitimate to apply Eq. �12� also for rectangu-
lar cross section ��=1�. In this case, Eq. �12� can be written as

Table 3. Characteristics of the Reservoirs Considered in This Study

Reservoir
V0

�m3�
h0

�m�
A0

�m2� a

Ridanna1 106,102,099 291 131,778 0

Ridanna2 74,032,899 198 70,775 0

Ridanna3 31,236,399 181 52,010 0

Valsesia1 35,158,098 160 41,068.4 0

Valsesia2 46,466,199 203 88,554.8 0

Valsesia3 46,878,299 187 53,953.06 0

Valsesia4 86,204,198 220 79,609.8 0

Valsesia5 10,146,999 125 34,841 0

Adamé 4,697,624 31.793 5,273.98 0

Valtellina1 920,671.5 44.23 3,148.16 0

Valtellina2 1,564,298.4 30.796 3,009.35 0

Valtellina3 896,576.6 57.82 7,663.44 0

Brembo 16,266,345 137.4 25,989.38 0

Fig. 14. Measured �Chervet and Dallèves 1970� and simplified
discharge hydrographs at the breach
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Qp

A0
�gh0

= k�a/A0�� 8

27
�a/A0

�25�

where k�a /A0� values are given in Table 1. Eqs. �24� and �25� are
plotted in Fig. 12 as a function of the a /A0 ratios of Table 1,
clearly evidencing a satisfactory agreement, with an average per-
centage difference of 3.0 and a maximum of 7.9. A feature of Eqs.
�12� and �24� that can be observed in Fig. 12 is that the peak
discharge is higher than the value one would obtain from the
application of Ritter’s solution �shown as a third curve in Fig. 12�
computed considering the breach area a. Actually, the discharge
provided by Ritter’s solution represents the discharge at the very
onset of the dam break process. The discharge hydrograph peak,
however, is located later and is caused by the complex pattern of
the water surface drawdown in the area surrounding the breach, as
can be appreciated in Fig. 13 for the WES �3.1� test case.

Another validation of the proposed simplified procedure in-
volving also the shape of the hydrograph can be accomplished
using the experimental data of Chervet and Dallèves �1970� re-
garding a dam break in a sloping rectangular channel, with S0

=0.04 m /m and a /A0=1. Channel width and initial water depth
behind the dam are 0.3 m, the channel Manning’s n is
0.014 s /m1/3. Fig. 14 shows the comparison between the experi-
mental data and the hydrograph that can be obtained by applying
the proposed procedure, although assuming �=1.2, that is the
value in Table 2 closest to the experimental situation. Actually,
contrary to the dimensionless peak discharge, the dimensionless
reservoir emptying time, that is needed for the construction of the
hydrograph, strongly depends on �. Nevertheless there is a good
agreement between the two hydrographs, although the tail of the
simplified hydrograph is shorter than the experimental one. This
effect, of limited interest from the practical point of view, is very
likely related both to the mismatch between real and simulated �
and to channel resistance.

In order to further verify the effectiveness of the proposed
procedure an extensive set of tests using real bathymetries was
carried out. For each case, the polynomial expression Eq. �13�
was compared with the numerical hydrograph obtained at the
breach section by solving the 2D De Saint Venant equations �Eq.
�9��. These equations are widely accepted in the literature as the
state-of-the-art tool for the accurate reconstruction of complex
dam break scenarios �e.g., Valiani et al. 2002; Begnudelli and

� � �−� 
 �m4−�� � �m2−��
L0

�m� S0 �−�

1.8 11.99 4.58 2,146.1 0.136

1.7 45 8.57 2,816.7 0.07

1.8 15 4.34 1,756.8 0.103

1.76 28.864 5.42 2,352.5 0.068

1.5 78 30.12 1,315.7 0.154

1.67 39.99 8.77 2,273.4 0.082

1.82 2.56 4.35 3,071.3 0.072

1.71 19.99 9.04 749.3 0.166

1.66 499.999 16.57 2,557.2 0.012

1.78 23.79 3.62 809.6 0.055

1.49 309.62 17.89 1,329.4 0.023

1.7 15.07 7.68 306.57 0.188

1.9 9.99 2.2988 1,740.28 0.079
/A0 �−

.39

.38

.37

.3

.37

.39

.43

.49

.4/0.7

.37

.35

.37

.32
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Fig. 15. Geometrical characteristics of the Ridanna1 basin: �a� 3D view of the bathymetry; �b� 3D view of the water surface within the reservoir
before the failure; �c� real storage-depth curve �Eq. �21�� compared to the fitted one; and �d� real and approximated �Eq. �1�� cross sections at the
dam location
Fig. 16. Comparison between computed and simplified hydrographs for the considered real bathymetries
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Sanders 2007; CADAM and IMPACT projects: Soares Frazão et
al. 2000; Soares Frazão et al. 2003�.

To this purpose, a numerical description of the bathymetry is
obviously required, a piece of information that is not always
available. Accordingly, in order to get a large testing set, both the
bathymetry and the stage-volume curve were derived on the basis
of the digital elevation model �DEM� for a group of alpine valleys
which potentially could have been the location of real reservoirs.
The DEM space discretization varies between 5 and 20 m. Most
of the simulations were done using a breach ratio a /A0 close to
1/3, as assumed in a previous section. Overall, 13 different reser-
voirs were considered, in order to explore a wide range of reser-
voir volumes, stages, slopes and shape parameters, as shown in
Table 3. Actually, different combinations of these parameters can
significantly influence the characteristics of the emptying process.

In order to make our comparison as complete as possible, it
would be necessary to compare graphically the real and the ap-
proximated stage-volume curve Eq. �21�, the real cross section at
the dam location and the corresponding approximation Eq. �1�,
and, last but most important, the numerically computed hy-
drograph and the simplified one, Eq. �13�. Due to space con-
straints, this detailed presentation will be limited to the first case
�Ridanna1, see Fig. 15�. Only the comparison between the hydro-
graphs will be shown for the other ones in Fig. 16. In general, one
can observe a good agreement although in some cases �i.e., Vals-
esia1 and Valsesia5� the synthetic hydrograph provides a shorter
tail than the one turning out from the 2D simulation. This mis-
match, rather irrelevant from the practical point of view, is related
to the vertical mass distribution within the reservoir and can be
appreciated considering its stage-volume curve. The least squares
approximation that gives the two parameters � and 
 in Eq. �21�
should provide an overall good approximation of the stage-
volume curve. If this is not possible, the emphasis of the fitting
process should be put on the part of the curve corresponding to
the highest stages, which govern the initial, most important part
of the hydrograph. In this case, however, one might expect a
mismatch in the hydrograph tail. This situation is portrayed in
Fig. 17, where the stage-volume curve for Valsesia1 is shown
along with two least square approximations. The first approxima-
tion, corresponding to �=1.76, has been computed using all the
data. The second one has been calibrated with stages lower than
80 m, and clearly shows �see inset of Fig. 17� that a better ap-
proximation at low stages is provided by �=1.1. Since it is an
easy task to show that the lower the exponent of the stage-volume
curve, the longer the tail �see e.g., Macchione and Rino 2008�, the

Fig. 17. Valsesia1 stage-volume curve and two least square approxi-
mations, corresponding to �=1.76 and �=1.1
approximation using �=1.76 provides an overall good response
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with the exception of the final part of the emptying process,
where a lower value of � would provide a better reconstruction.

Conclusions

In this contribution, a simple procedure to identify, in an effective
way, the hydrograph following a sudden partial dam break has
been proposed, under the hypothesis that the valley containing the
reservoir can be assumed as prismatic with a monomial cross
section, according to Su and Barnes’ classical description Eq. �1�.
Exploring a wide range of the geometric parameters and on the
basis of an extensive set of numerical simulations of 2D De Saint
Venant equations, a suitable adimensionalization of the numerical
results has been proposed. This procedure leads to a description
of the breach hydrograph in terms of a biunique relationship be-
tween dimensionless discharge and dimensionless time for as-
signed breach ratio a /A0 and shape parameter �. This hydrograph
can be approximately described by a fourth degree polynomial
expression that is identified by a set of simple geometrical and
physical constraints. This description can be effectively used with
real reservoirs for which the actual volume-depth curve and area
A0 of the dam cross section in correspondence of the initial water
depth h0 are known. In this case, by solving two linear systems,
the dimensionless hydrograph in correspondence of a selected
breach area a can be obtained in a straightforward way. The pro-
posed approach is extremely simple and demands very few infor-
mation that is usually available for all reservoirs. It has been
proven effective in representing in a careful way the hydrographs
calculated through 2D simulations of the emptying process fol-
lowing a sudden partial dam break in real bathymetries. A code
implementing the presented algorithm is freely available upon
request to the writers.

Acknowledgments

We wish to thank the reviewers and the editor, whose comments
contributed to improve the quality of this paper.

Notation

The following symbols are used in this paper:
A � wetted area in correspondence of depth h;

A0 � wetted area at the dam in correspondence of depth
h0;

a � area of the partial breach in correspondence of
depth h0;

B � free-surface width in correspondence of depth h;
bi ,ci � coefficients of ith power terms in Eqs. �14� and

�15�;
E ,F � flux vectors along x- and y-directions in 2D De

Saint Venant equations;
g � acceleration due to gravity;
h � water depth;

h0 � initial water depth at the dam;
L0 � initial extent of the water surface, measured

orthogonally to the dam;
n � Manning’s roughness coefficient;
Q � discharge;

Qp � peak discharge;

Q0 � reference discharge �Eq. �22��;
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Q̄ � dimensionless discharge, coincident with �7

�Eq. �6��;
Qp � dimensionless peak discharge �Eq. �12��;

Q� � dimensionless discharge �Eq. �19��;
S � vector of source terms in 2D De Saint Venant

equations;
Sfx ,Sfx � slope friction along x- and y-directions;

S0 � bottom slope;
S0x ,S0x � bottom slope along x- and y-directions;

t � time;
t0 � reference time �Eq. �23��;
t̄ � dimensionless time, coincident with �6 �Eq. �3��;

tf � dimensionless emptying time of the reservoir;
U � vector of conserved variables in 2D De Saint

Venant equations;
u ,v � flow velocity components along x- and y-directions;

V � volume within the reservoir in correspondence of
depth h;

V0 � volume initially stored within the reservoir;

V̄0 � dimensionless volume initially stored within the
reservoir;

w � width of partial breach;
� � Chezy’s coefficient;

x ,y � orthogonal space coordinates in the horizontal
plane;

z � bottom elevation;
�x � numerical grid spacing;

� � coefficient of the power law expressing wetted
area as a function of depth �Eq. �1��;


 � coefficient of the power law expressing the
stage-volume curve of the reservoir �Eq. �21��;

� � exponent of the power law expressing wetted area
as a function of depth �Eq. �1��; and

�i � ith dimensionless group.
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