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Energy dissipation and permeability in porous media
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PACS. 47.55.Mh – Flows through porous media.

PACS. 47.15.Gf – Low-Reynolds-number (creeping) flows.

PACS. 47.85.Dh – Hydrodynamics, hydraulics, hydrostatics.

Abstract. – We investigate flow through porous media by solving the Navier-Stokes equations
in 3D porous structures using the lattice Boltzmann method. We analyse the distribution of
local specific dissipation of mechanical energy and we use this quantity to investigate the
microscopic origin of absolute permeability. The averaging of this quantity on a flow cross-
section provides a methodology to locate energy losses and to spot the appropriate scale of the
permeability Representative Elementary Volume (REV). The effectiveness of the approach is
shown by a numerical study of the flow field in simplified porous media for which experimental
results are available.

Following up early works on lattice Gas Cellular Automata and lattice Boltzmann [1],
which demonstrated the possibility of computing the absolute permeability of rock samples in
2D and in 3D, several papers over the last years have demonstrated the capabilities of LGA
and LBM techniques to solve Navier-Stokes equations in complex geometries and to compute
the mesoscopic properties of porous media (e.g., inter alia, [2]). Accordingly, it is clear that
these methods can theoretically be used to complement laboratory tests, providing insights
into the flow dynamics in complex structures that should make it possible to explore the
origins of dissipative processes and of upscaling of rock properties (e.g., [3]). In this direction,
some papers have recently explored the distribution of either computed flow velocity (e.g., [4])
inside simple reconstructed porous media or of kinetic energy (e.g., [5]) in 2D flow fields. This
research direction is of utmost importance, since it will help explaining, from a theoretical
point of view, the origin of absolute permeability K. However, absolute permeability is an
average quantity that should be measured on a representative elementary scale and is closely
related to energy dissipation on a smaller scale. In this direction we argue that kinetic energy
and velocity distributions provide a useful but not conclusive answer to this problem.
Restricting our attention to the incompressible, isothermal and stationary flow of a

Newtonian fluid, in this contribution we suggest analysing the distribution in a flow field
c© EDP Sciences
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of the local rate of dissipation of mechanical energy per unit mass of fluid due to viscosity,
given by

φ =
2µ
ρ
eijeij , (1)

where µ [Pa s−1] is the first dynamic viscosity coefficient and ρ [kg m−3] the fluid density.
Here eij(x, y, z) is a symmetrical strain tensor defined as

eij =
1
2

(
∂uj

∂xi
+

∂ui

∂xj

)
, (2)

u(x, y, z) being the velocity of the fluid at position (x, y, z). Since quantity (1) is closely re-
lated to the local energy dissipation per unit mass of fluid, it can be related to the dissipative
processes which act on a larger scale, as originally shown by Prager and Weissberg [6], who
theoretically derived a variational upper bound on the permeability by minimizing the overall
rate of energy dissipation for the creeping flow within the intergranular space between pene-
trable spheres. In particular, quantity (1) governs the evolution of the total head H(x, y, z),

H(x) =
p

ρ
+
u2

2
, (3)

i.e. the specific energy per unit mass of fluid at position x, p being the local pressure. If a
suitable average is taken of this quantity over the flow field, its drop can be interpreted in
terms of an overall friction coefficient which, in the case of saturated flow in porous media,
is closely related to the absolute permeability. To demonstrate this point, let us consider,
for example, the flow field in an isotropic porous medium across which an assigned pressure
drop is applied. Here an effective flow direction can be identified and a cross-section A [m2]
can be defined as the 2D subspace orthogonal to this direction. Let s be the curvilinear
coordinate along the average flow direction and Q [m3s−1] the volumetric discharge through
the cross-section, then

H(s) = H(0)− 1
ρQ

∫ s

0

∫
A(s)

2µeijeij dAds (4)

provides the variation of the average total head H(s) at cross-section A(s), a quantity that is
introduced when a one-dimensional approach is adopted. Since the same quantity H appears
in the empirical Darcy’s law valid at the REV scale, the scalar absolute permeability coefficient
can be computed as a function of s, as

k(s) =
µQ2s

A
· 1∫ s

0

∫
A(s)

2µeijeij dAds
. (5)

Accordingly, the local rate of dissipation (1) provides a continuous quantity (5) whose meso-
scopic counterpart, K, is of great interest for the study of flow in porous media. Usually, in
most applications the absolute permeability K is computed using the overall head drop across
a plug and the corresponding effective velocity, Q/A. It might be important to emphasize that
both approaches can be used to computeK. However, whilst the latter assumes the knowledge
of the minimum linear scale of the representative elementary volume scale for permeability, say
S, a quantity that is a priori unknown, relations (4) and (5) provide the overall energy dissipa-
tion as a continuous function of s (see figs. 2 and 4b below), allowing a straightforward evalua-
tion of S on the basis of the analysis of the k(s) function. Whilst the identification of the REV
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Fig. 1 – Longitudinal section of a labyrinth seal (a), as numerically investigated in this work. Here
∆/δ = 1.49, where ∆ is the gap width and δ is the step height and 2δ the step length. In (b) a map of
the longitudinal velocity component u [l.u./t.u.] is shown through an elementary cell of the seal. All
units are lattice units. (c) is a photograph taken during the prototipal experiment [9]. Flow enters
the seal from the left.

scale can be performed also by increasing the computational domain size in a step-wise fashion
and computing the overall head drop across the plug until convergence to a well-defined limit
is verified (e.g., [7]), H(s) and k(s) are by definition continuous functions that provide clear
indications on the variation of total average head and overall dissipation on each cross-section
in the direction of the effective flow. Since k(s) is obtained by integration of the local rate of
dissipation of mechanical energy (1), the boundary features that determine k(s) can be easily
located by inspecting the space distribution of (1), something that could not be done by com-
putingK in the usual way, i.e. by using averaged quantities on the cross-section that hide local
details and do not allow this type of analysis. An example will be briefly shown in the following.
Over the last few years several experiments have been published in the literature using

reconstructed porous media [8] and comparing numerical estimates of permeability with ex-
perimental results. However, since the numerical specimens are inevitably smaller than the
laboratory ones due to computational constraints, it has not been clarified what the least
linear space scale S is at which absolute permeability can be computed. To this purpose we
believe that although permeability is, dimensionally, a geometric quantity, its determination
on the basis of geometry would yield only a partial picture of the problem. Rather, it must be
evaluated on the basis of its energetic implications, that are clearly revealed by (5) as a func-
tion of s. We believe that the determination of this point would shed light on the possibility
of devising numerical experiments for testing upscaling mechanisms and would provide infor-
mation on the minimum numerical effort needed to numerically reproduce the permeability
of larger prototypal specimens.
In the following we apply the proposed approach to the slow viscous flow inside a labyrinth

seal and through a regular spherical-bead packing. As far as the first application is concerned,
it has been chosen for the availability of detailed experimental measurements [9], which can
be used to test the reliability of the numerical solution in a high-relative roughness geometry
that provides a simplified picture of the flow field inside a porous medium. In particular, the
flow field inside a rectangular duct with gap height ∆ has been investigated, where a regular
sequence of rectangular obstructions of height δ and length 2δ is present (see fig. 1a). In
the numerical experiments the pressure and velocity fields have been computed by using a
d3q19 LBM solver [10] that has been implemented to this purpose. No-slip conditions along
solid boundary and periodic conditions between the inlet and the outlet have been imposed
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Fig. 2 – The total H (thick line) and piezometric h (thin line) head with the k(s)/K pattern along
a regular sequence of elementary cells of the seal. Please note the pressure rise and head loss behind
each abrupt expansion, a well-known effect in hydraulics, named after Borda (∆/δ = 1.49, Re = 107).
By subtraction of the two heads, the average kinetic energy per unit mass on each cross-section s can
be obtained. The k(s)/K pattern along the seal allows to identify the minimum linear scale for K.

on an elementary cell of the periodic array in the prototypal seal. We have explored the
relative roughness range ∆/δ = 1.2 and 1.49, with Reynolds number (Re = 2Q/(νb), where
b = 1 is the duct width and ν is the fluid kinematic viscosity) varying between 1 and 400
for ∆/δ = 1.49. There is a close resemblance between the photographed and the numerically
computed flow fields in the same Re range, both as far as the streamlines pattern and the
presence and extension of recirculation cells are concerned. When Re > 5, a recirculating
region is observable immediately downstream of the step. When Re grows higher (e.g., in the
case portrayed in figs. 1b and c) a second smaller vortex develops immediately upstream of
the step. Eventually, for the highest simulated Re, intermediate smaller and weaker eddies
can be detected. For the labyrinth seal of fig. 1, in place of permeability it is more usual
in applied fluid mechanics to compute a friction factor λ [-] ([-] stands for non-dimensional
quantity), typically defined through the Darcy-Weisbach relation

λ = −8RA
2

Q2

∆H
L

, (6)

where R [m] is the boundary related hydraulic radius. In the field of validity of Darcy’s law
it is easy to show that the relationship

λ =
f

Re
(7)

holds, where f [-] is a constant that depends on boundary geometry only. Accordingly, it is
possible to write

K =
32R2

f
, (8)

and the hyperbolic pattern (7) is equivalent to a constant permeability K as given by Darcy’s
law. Our numerical results are in extremely good agreement with the measured friction
factor λ (error < 3%), even for the highest values of Re explored in the experiments, where a
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Fig. 3 – Map (a) of local adimensional dissipation φ/φmax along an elementary cell of a duct charac-
terized by the boundary with the regular roughness shown at the upper right corner, when Re = 1.49.
Flow enters the duct from the left, as shown by the arrow. In (b) the same porous medium where the
lower boundary has been shifted of 1/2 wavelength to the right. (c) compares the local dissipation
distribution in the throat of case (a) (rough duct, RD) with the one in the cross-section of a rect-
angular smooth duct (SD) having the same width W , when the discharge is equal in the two cases.
Note the significant sharpening of the dissipation profile near the solid wall, showing that most of the
contribution to overall dissipation is confined to a small region of the sample.

significant departure from Darcy’s law can be observed, a well-known effect due to the growing
importance of the convective term in the Navier-Stokes equation.
In addition to the overall permeability K across the elementary cell, in this paper we

emphasize the importance of the variation of H(s), as given by (4). This is portrayed in fig. 2,
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Fig. 4 – Elementary cell (a) for the simulation of creeping flow through a face-centered-cubic spherical-
bead packing of maximum concentration. The fluid flows from the right to the left, in the direction of
the arrow. In (b) the total H (thick line), piezometric h (thin line) head and the k(s)/K pattern are
shown along a porous medium made up of a sequence of elementary cells of the cubic packing. Here the
average kinetic energy per unit mass has been magnified to enhance the separation between the two
lines. Again, note the pressure rise behind the gradual intergranular space expansions (Re = 0.07).

where H(s) and h(s) (the pressure-related term, obtained by subtracting the averaged kinetic
energy contribution to H) are shown along a regular sequence of elementary cells. This type
of representation, which is akin to that used in pipe flow analysis, allows the identification of
the REV scale and provides a clear indication of the relative importance of single dissipative
processes inside the flow field. It is here possible to observe both the distributed energy grade
along the conduit and the energy loss due to the abrupt expansion and contraction behind
and in front of the step. In particular, the abrupt expansion causes an energy loss which
can be easily evaluated by extrapolating the head line H(s) in fig. 2 and which, in itself, is
greater than the overall energy loss along the gap. The ratio between the localized energy loss
at the sudden gap contraction and the head loss at the expansion is approximately 0.4. The
k(s)/K pattern clearly shows that, while the minimum scale S at which permeability could be
exactly computed is the full length L of an elementary periodic cell, if one randomly selects a
stretch l of duct, in order to keep the error on the computed permeability within a 10% error
it must be at least l/L > 4. In addition, fig. 2 easily allows to locate the major geometric
sources of overall dissipation. These can be further inspected by considering the φ(x, y, z)
map, that provides guidances to a possible boundary redesign. We will show this possibility
with reference to another high-relative-roughness duct, shown in fig. 3a. Figure 3a shows the
longitudinal map of local dissipation (1) inside the elementary cell of the duct partly shown
in the upper right corner, when Re = 1.49, being here the linear dimension provided by the
volumetric height. As can be seen, the largest contribution to the overall energy loss arises
in correspondence to the maximum duct contraction. In order to avoid it, if we shift the
lower boundary 1/2 wavelength ahead (see fig. 3b), we neither change the hydraulic radius
nor the porosity; however our numerical simulations show that there is a 87% increase of the
permeability!
For the sake of simplicity, we have so far investigated high-relative-roughness plane flow
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fields, but the same methodology can be applied to three-dimensional flow fields, such as the
one through a face-centered-cubic spherical-bead packing of maximum concentration (porosity
φ = 0.2595 [-]) investigated in [4]. Here we have taken full advantage of the symmetry of this
packing and we have considered the elementary cell shown in fig. 4a. Along the side walls
of the specimen, periodicity boundary conditions have been imposed, whilst along the solid
boundary a first-order–accuracy non-slip condition has been imposed. By operating with a
68 × 95 × 134 discretization of the boundary, our computed permeability is within 1% of
that computed in [4]. In fig. 4b we show the variation of H(s), h(s) and k(s)/K along the
reconstructed specimen, when Re = UD/ν = 0.07 (here D is the grain diameter and U is the
average flow velocity over a cross-section). From these patterns it is easy to spot the minimum
linear dimension needed to keep the error on the permeability below an assigned threshold.
In conclusion, the use of relationship (5) provides a way to identify the minimum linear

scale for the evaluation of the permeability REV, and the space distribution of the rate of
dissipation of mechanical energy (1) highlights the boundary sources of energy dissipation
that determine, on a larger scale, the local absolute permeability.
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