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ABSTRACT

In order to gain a deeper understanding of the dynamics of erosion and sediment transport on hillslopes, it seems important
to clarify the role of some basic mechanisms involved in these processes. While there is evidence that this cannot be done
using the theoretical framework of river hydraulics, the use of numerical analysis could be of considerable help. The nature
of the problem requires a technique capable of solving Navier–Stokes equations at low Reynolds number, with
geometrically complex boundaries and solid particles moving inside the flow field. All these requirements make a novel
method, known as lattice gas automaton LGA, a natural candidate for the study of the hydrodynamics of sheetflows.
However, due to the recent introduction of this technique, there is a lack of a clear definition of its operational limits.
Considering the case of a viscous sheetflow on an erodible rough boundary, we argue that by using LGA the stream
Reynolds number can be increased only at the expense of a reduction of the boundary shearing stress. Accordingly, LGA
cannot profitably be used to study the beginning of sediment motion and transport. On the other hand, a further evolution of
LGA, known as the lattice Boltzmann method, seems highly promising for the numerical study of the erosion processes that
eventually lead to drainage network evolution along hillslopes.  1997 by John Wiley & Sons, Ltd.
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INTRODUCTION

It is widely recognized that a correct understanding and quantification of the mechanisms leading to erosion and
transport on hillslopes is a crucial issue, both from theoretical and practical points of view. For the
geomorphologist, these processes are among the key factors which control landscape evolution; for agricultural
engineers, an understanding of the processes governing rill and inter-rill erosion is of primary importance to
prevent crop land loss and to choose between different agricultural practices. Furthermore, hydraulic and
environmental engineers are interested in erosion processes since they control the suspended sediment load
transported by rivers.

In spite of its great importance, this issue seems to be neglected in the literature if we compare the number of
papers concerning the mechanics of sediment transport on hillslopes with the great number of contributions
about erosion and transport in rivers. In recent decades, however, a considerable effort has been devoted to fill
this gap, mostly by means of field and laboratory studies.

Nevertheless, sediment transport mechanics is still mainly analysed within the framework of river
hydraulics (e.g. Roth et al., 1989). Consider, for instance, the erosion and transport processes caused by
sheetflow on a cohesionless soil. Apart from the role of rainfall in detaching soil particles, there is evidence that
the mechanics of sediment erosion and transport is quite different from that typical of rivers. The first situation
is dominated by hydraulically smooth and laminar flows, the latter by rough, turbulent flows. These different
hydrodynamic regimes give rise to different structures of the flow field and, consequently, of the fluid dynamic
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force field around sediment particles of the bed. The equilibrium of a single grain must therefore be analysed by
means of different approaches.

As an example, Yalin (1977, 1992) identifies the condition of particle entrapment in rough turbulent regime
as:

L/W>1 (1)

where L (in N) is the lifting force acting on the grain and W (in N) is its submerged weight. This relation, based
on the direct observation of the processes arising at the beginning of sediment motion, clearly implies that the
grain detachment is due entirely to the action of the lift. Most of the currently used physically based bedload
formulas, such as those developed by Einstein (1950), Yalin (1963) and Bagnold (1973), have been derived on
this interpretative basis.

However, according to the experimental work of Coleman (1967), Watters and Rao (1971) and of Davies and
Samad (1978), there is evidence that the lift, in the hydraulic conditions prevailing in sheetflows, is bedward
oriented. This would imply that the use of Relation 1 in discussing sheetflow erosion is inappropriate, because
the role of the lift, if any, is stabilizing rather than mobilizing, and the onset of the motion of grains is governed
by drag force. Accordingly, the motion of detatched grains is rolling rather than saltating in laminar sheetflow,
and the use of transport equations specifically derived for rough turbulent conditions to model the transport
capacity for overland flow would be questionable, at least at a conceptual level. This is the case of the Yalin
(1963) equation, suggested by Neibling and Foster (1980) for use as part of the CREAMS model (Knisel, 1980),
and of the Einstein equation used by Roth et al. (1989) in their hillslope evolution model. It is relevant to note
here that Francis (1973) has shown, by analysing multi-exposure photographs of grain trajectories moving on a
rough fixed bed of a laminar stream, that bedload transport by saltation can sometimes occur in the absence of
fluid turbulence. Nevertheless, as far as the micromechanics of sediment particles is concerned, this similitude
reflects only the kinematics of the process but not its dynamics. As a matter of fact, while in the case of turbulent
motion, particle saltation occurs mainly as a consequence of the disruption of the viscous sublayer by burst
evolution that can induce positive lift forces, in the case considered by Francis it is purely a ballistic effect. In
other words, particle entrainment does not occur by saltation in a laminar flow.

We believe that an interesting contribution to this and other debated questions on the mechanics of sediment
motion in the field of inter-rill erosion could come by the numerical solution of the flow field around a rough,
movable boundary. This task is considerably hindered by the complexity of the boundary geometry, the biphase
nature of the solid–fluid flow and the presence of a free surface, potentially perturbed by the momentum transfer
of incoming raindrops. In this paper we investigate this problem and seek a solution by means of a novel
numerical technique.

THE LATTICE GAS AUTOMATON AS A NUMERICAL METHOD FOR THE STUDY OF SOIL
EROSION

As part of a wider research programme on sheetflow erosion and transport, we have explored the possibility of
gaining further insight on the mechanics of the interaction of laminar sheetflows and incoherent sediments by
numerically solving the flow field on an erodible rough boundary using a lattice gas automaton LGA technique.

A discussion of this numerical technique goes beyond the scope of the present contribution; excellent
accounts have been proposed by Wolfram (1986) and Frisch et al. (1987). In this context, it is relevant to note
that the convergence of the constitutive equations of this method to the Navier–Stokes equations has been
theoretically demonstrated and numerically verified (Kadanoff et al., 1987; d’Humières and Lallemand, 1987)
for some well-known hydrodynamic cases. The method is basically an evolution of the kinetic theory of gases.
Accordingly, it is not surprising that simulations of incompressible flows are limited by a constraint on the
Mach number, Ma, (Schlichting, 1979):

Ma=
U

c
<0·3 (2)
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where U (m s−1) is the average flow velocity and c (m s−1) is the speed of sound in the fluid. The speed of sound in
LGA has been numerically and theoretically investigated (e.g. Frisch et al., 1987). Unfortunately, while in real
gases its value is sufficiently high to make the constraint of Equation 2 easily satisfied in many applications, in
LGA its value is considerably smaller, so imposing a severe limitation on the maximum attainable value of U.

Several lattice gas models have been developed. They basically differ in the number of particles and the
collision rules at each lattice site. For our simulations, an FHP III (e.g. Frisch et al., 1987) algorithm has been
implemented and tested. This model includes one rest particle and implements all the possible collisions at a
node preserving mass and momentum. It can be shown that this allows the minimization of the fluid kinematic
viscosity. From a theoretical point of view, there are some good reasons to use a LGA to simulate the laminar
sheetflow on a moving boundary. Apart from their computational efficiency that allows massive parallel
implementation, these methods are particularly appropriate to study viscous flows at low and moderate
Reynolds numbers along complex boundaries, as demonstrated by their most promising field of application,
that is the small-scale study of the flow fields inside porous media. In addition, these methods have been
efficiently extended to simulate flow problems with free boundaries (Clavin et al., 1988) and solid fluid
suspensions (Ladd et al., 1988). All these properties make the LGA a natural candidate for the solution of
viscous biphase flow fields.

The study of sediment transport mechanics implies the study of the distribution of stresses on the bed.
Accordingly, in order to test our implementation of the FHP-III LGA model, we have accomplished a
preliminary evaluation of the drag exerted by a uniform flow on a circular cylinder of infinite extension. The
results, obtained numerically by integrating the stress on the cylinder surface, have been compared with the
theoretical and experimental values available in the literature. When the computation domain is not sufficiently
wide with respect to the typical linear dimension of the cylinder, i.e. its diameter d (m), a systematic
overestimation of the theoretical drag values can be observed; this is a well known physical and numerical
effect. Provided that the above-mentioned condition is satisfied, the results seen in Figure 1 for a set of
simulations in the range 0·5<Ud/v<30, (where d (m) is the diameter of the cylinder and v (m2 s−1) the fluid
kinematic viscosity) are satisfactory and show the possibility of using the LGA method to compute the
hydrodynamic force exerted on a body immersed in a moving stream.

In spite of these encouraging results, the evaluation of the drag exerted by a laminar stream on the grains of
an erodible bed during some preliminary simulations has shown that its value decreases when the stream

Figure 1. Drag coefficient, Cd, for circular cylinders as a function of the Reynolds number, Ud/v. The open squares correspond to the
values obtained by solving the flow field with the LGA method, and the solid squares to experimental data.
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Figure 2. Bidimensional laminar flow field on a rough boundary computed by a FHP-III LGA. The vertical dimension has been discretized
in 226 lattice units. The scale of the velocity profiles has been magnified, the maximum velocity being about 0·3 lattice unit per time step,
in order to respect the incompressibility constraint (Equation 2). Accordingly, velocity gradients along the lower rough boundary are

flatter.

Reynolds number is increased. Accordingly, besides the well known incompressibility constraint which limits
the maximum attainable velocity in a LGA simulation, we have found a further constraint in the method,
previously unknown in the literature. This constraint reduces the applicability range of the method in the field of
sediment erosion and transport.

IDENTIFICATION OF A LIMIT OF THE LGA METHOD

In order to discuss this restriction, let us consider the incompressible inner shear flow between two parallel,
rough and indefinite plates. This situation can be regarded as an idealization of the free surface flow field over an
erodible bed before the inception of erosion (see Figure 2). For the sake of simplicity, we shall consider a single-
phase flow and we shall demonstrate that the LGA technique is not suitable for the study of the onset of the two-
phase transport phenomenon.

The two-dimensional stationary and uniform motion can be fully defined by the set of six characteristic
parameters ρ, µ, D, v*, h, g, where ρ (kg m−3) is the fluid mass density, µ (Pa) is its dynamic viscosity, D (m) is
the linear dimension which characterizes the wall roughness, v* (m s−1) is the shear velocity, h (m) is the flow
depth and g (m s−2) is the acceleration due to gravity.

If we select from the set above the three variables ρ, v*, h as basic quantities, by applying the procedures of
dimensional analysis (Sedov, 1982), we can easily derive a group of three possible dimensionless variables
governing the phenomenon:

X1 =
hv*

v
(3)

X2 =
h

D
=Z (4)

X3 =
v 2

*

hg
(5)

It can be easily shown that X3 is the friction slope J. If τ0 (Pa) is the shear stress on the bed surface, then, by
definition:
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τ0 =γhJ=ρv 2
* (6)

and hence

X3 =
ρv 2

*

hγ
=J

Similarly, the dimensionless variable X1 reflecting the influence of the kinematic viscosity v, can be expressed
in terms of the flow Reynolds number Re:

Re=
4Uh

ν

where U (m s−1) is the average velocity of the flow. Considering the laminar flow inside a rough, rectangular
duct, the average velocity U can be defined by the Darcy–Weisbach relation:

J=λ(Z,Re)
U2

8gh
=

96f(Z)

Re

U2

8gh
(7)

The friction coefficient λ is defined as:

λ=96f(Z)/Re

where f(Z) is a function of the relative roughness Z only, whose value tends to 1 as Z is greater than 10. Rewriting
λ in terms of the flow and friction velocities, we can easily write:

    

U

v *

= =
8 8

λ
Re

96f(Z)

and, as a consequence, X1 can be redefined as:

    
X

hv hU v

U
1

4

4

1

4 8

3

4
= = = =* *

ν ν
Re

96f(Z)

Re
Re f(Z)

(8)

Accordingly, every dimensional function of the six variables mentioned above can be replaced either by a
dimensionless function of the three parameters:

X1, X2, X3 ≡X1, Z, J

or, equivalently, by a function of

Re, Z, J (9)

Let us consider, as an example, the dimensionless expression of the bed shear stress τ0. It can be written either
as:
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ϕ τ

ρ
τ 0

0= =
v *

2
1

or, equivalently, in the form:

  
ϕ τ

ρ
τ 0

0

Re
f(Z)= =

U 2

1
(10)

For convenience, henceforth we shall use the set of dimensionless variables (Set 9) with reference to Equation
10 for the dimensionless shear stress.

During the experimental determination of the critical shear stress for an erodible bed, after the characteristic
diameter of the grains has been chosen, the space of the dimensionless variables (Set 9) is usually explored by
varying the fluid inflow rate. Obviously, Re, Z and J cannot be varied independently, because of the constraint:

f (Re, Z, J)=0 (11)

the exact form of which depends on the flow regime. In the case of laminar flow, as considered above, the
relation 11 can be easily represented in explicit form as:

  

JgD3

2

3

4ν
= f(Z)

Re

Z 3
(12)

Once the absolute roughness D and the fluid have been chosen, Equation 12 can be represented as a surface in
the space of the variables (Set 9), and it can be further examined during the experiments in the laboratory.

Let us now consider the same problem, from the numerical perspective, using an LGA technique. We could
be tempted to believe that the path just outlined can be followed numerically. Unfortunately, as we found out,
this is not the case. Because of the incompressibility constraint, when using this method the flow Reynolds
number can be increased only by enlarging the characteristic linear dimension h. This is because the other two
variables that can increase it are already constrained by a fixed value. The kinematic viscosity v is fixed,
depending on the set of collisions of the chosen FHP model. On the other hand, the average velocity U has a
very limited range of variation owing to the restriction on the Mach number, and is usually maximized in order
to reduce the white noise that, in this method, affects the results (Wolfram, 1986). Consequently, Re can be
increased only by acting on the relative roughness Z, according to the relationship:

Re=CZ (13)

where C is a constant, and the set of attainable simulations is only that deriving from the system:

  

JgD

CZ

3

2 3

3

4ν
=

=









f(Z)
Re

Z
Re

(14)
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Figure 3. The dimensionless parameters’ space. Each point inside it corresponds to a specific flow condition, identified by the value of the
three adimensional groups Re, the stream Reynolds number, J, the slope friction, and Z, the relative roughness. The pathline is the subset in
Equation 14 containing all the possible experiments which can be performed with an LGA model when the maximum flow velocity U is

constrained.

Therefore, only some of the potential combinations of Re, Z and J implicit in Equations 11 and 12 can be
investigated.

In particular, in the case of the viscous flow considered in this paper, the solution of the system in Equation 14
is the line shown in Figure 3, in the space of the variables (X,Z,J). It is observed that the rise in the Reynolds
number is accompanied by a rise in Z and a simultaneous decrease of the slope friction J. In particular, the
maximum value of J that can be simulated depends on the minimum value of Z. This implies, independently of
the setting of the grains of the bottom, the existence of a constraint on the maximum attainable value of the bed
shear stress. As an example, in the case Z>10, Equation 10 can be rewritten as:

  
ϕ τ

ρ
τ 0

0

Re
= =

U 2

12
(15)

Therefore, after U has been maximized, the bed shear stress τ0 is a decreasing function of Re. Clearly, this does
not lead to a simultaneous increase in Re and τ0 as required in a numerical simulation of the inception of
sediment motion and transport.

FUTURE DEVELOPMENTS

In spite of the advantages (e.g. memory efficiency, intrinsic parallelism and stability, ability to model
complicated moving boundaries and biphase flows) that make the LGA method ideally adapted to the
numerical simulation of sheetflow and rillflow erosion processes, the existence of the limit identified above
greatly restricts the scope of LGA in geomorphological problems, helping to clarify which calculations can
actually be done with LGA. As shown above, the identified constraint basically stems from the very limited
dynamics of the viscosity coefficient in LGA simulations. Another problem of simulations with LGA is the
considerable amount of statistical fluctuation that afflicts the results. As a consequence, the hydrodynamic
information can be derived only after a computationally expensive ensemble averaging of the original data
provided by the method.
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On the other hand, the discrete space, time and velocity equation:

fα(X+eα, T+1)=fα(X, T )+Ωα (16)

that in LGA simulations governs the dynamics of the quantity:

fα(X,T ) (α=1,...,6) (17)

(where fα(X,T) is a Boolean variable that indicates the presence at the lattice site X and time T of a particle with
velocity in the direction α on the hexagonal lattice used to discretize two-dimensional flow fields, and Ωα is a
collision operator) can be replaced by a similar equation in term of the one-particle velocity distribution
function nα(X,T), where nα is a continuous quantity. The latter equation can be derived from the Boltzmann
equation of kinetic theory (e.g. Cercignani, 1969), that describes the dynamics of the density n(v,x,t) of particles
with a given velocity u at a given space–time point (x,t). It has been suggested (McNamara and Zanetti, 1988;
Higuera and Jimenez, 1989) that the equivalent of Equation 16 which can be derived in this way, provides a
convenient substitution to LGA and this novel numerical method has been called the lattice Boltzmann equation
(LBA). This is essentially the kinetic equation resulting from ensemble-averaging of the FHP cellular
automaton dynamics. This method, instead of following the microscopic evolution of individual molecules as
in LGA, deals with one-particle distribution functions. In so doing, it replaces the Boolean variables that
represent the presence or absence of particles at a site by the real-valued mean populations, that is, fluctuation-
free, while it retains most of the advantages previously discussed for LGA.

Here, it is important to observe that the transport coefficients (e.g. the fluid viscosity) arising from the two
methods are different. In particular, while in LGA v is minimized by optimizing the collision rules between
particles, in LBA the same result can be obtained by the tuning of a few parameters in the collision operator, in a
more general way, independently of any collision rule. Accordingly, the viscosity coefficient can be decreased
to a considerably larger extent than in LGA, and the subspace in the Z–Re–J space of Figure 3 can be
significantly widened, as will be explored in future research.

CONCLUSIONS

In this contribution,the applicability of the lattice gas technique LGA to solving Navier–Stokes equations in
relation to problems of sheetflow erosion and transport is discussed. The method has been selected for its ability
to cope in an efficient way with complex geometries, with moving boundaries like those induced by the
presence of a free surface potentially perturbed by raindrops, and with two-phase flows like those following the
inception of grains inside an eroding stream flow. An LGA FHP-III model has been implemented and
numerically tested, verifying the convergence of the results to some analytical solutions of the Navier–Stokes
equations and to some experimental results for the drag of a circular cylinder. In spite of these encouraging
results, considering the case of viscous sheetflow on an erodible rough boundary, we show that, by using this
method, the stream Reynolds number can be increased only at the expense of a reduction of the boundary shear
stress. This drawback limits the range of applicability of LGA techniques to the study of erosion, and suggests
the opportunity for continuing research of a numerical method suitable for the solution of the hydrodynamics of
sheetflows and rillflows by using lattice Boltzmann methods.
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