ISEO: Improving the lake status from Eutrophy towards Oligotrophy Work-package 3: Quantification of internal phosphorus fluxes

ISEO-Meeting 17th April 2018 Brescia

Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany

Determination of pools and fluxes of phosphorus

Distribution of P in the water Fluxes from and to sediment P pools in the sediment

Impact of physical conditions on the internal P cycle

Oxygen depletion (anoxic mobilisation) Trap effect of monimolimnion Seiches and P mobility

Consequences for the lake management

Methods

Sampling campaigns 2016: April, October 2017: April, July, October 2018: April, October

Three main sampling points B1, B2 and B3

Additional points N-S transect B4, B5, B6 and B7

Methods

Distribution of total P in the water

1

No significant changes between April and October 2016 at between positions

13 μgP/L

38 µgP/L

102 µgP/L

Epi	0-20 m	
Нуро	20-100 m	
Monimo:	100-252 m	

TP_{Lake} (average) 60.5 μgP/L 2016

*Nizzoli et al.

- Less P in the euphotic zone
- Monimolimnion is acting as an (efficient) P trap
- Balance point of view: P export is decreased due to meromixis

April and October 2016

April 2016

"Diffusive" phosphorus release rates ranged between 1.26 and 3.02 mg P m⁻² d⁻¹

Profiles in the sediment water interface, October 2016

Despite the long time of meromixis we could observe steep gradients between sediment and water: No significant accumulation near the sediment water interface.

2

$08.04.16 \quad 11.05.16 \quad 13.06.16 \quad 16.07.16 \quad 18.08.16 \quad 20.09.16 \quad 23.10.16 \quad 25.11.16 \quad 28.12.16 \quad 30.01.17 \quad 04.03.17 \quad 04.03 \quad 04$

Trap material in 20 m and 90 m water depth

1.88 mg P m⁻² d⁻¹ 2.01 mg P m⁻² d⁻¹

Specific P content: 1,95 mg gw d⁻¹

The total P is low in comparison to other lakes. The mobile P varried between 873 and 1200 mg P m⁻².

"Mobile" P

Phosphorus diagenesis

B7

P content mg g dw⁻¹

1.95

1.06

0.83

Quantification of redox-controlled P

Additional capacity of P binding under oxic conditions

The higher the reductive potential the higher the impact of re-oxidation.

Phosphorus balance

P net release by a simple mass balance approach (long term):20 t per year P accumulation since 2005

- 1. Eutrophication potential of mobile P in sediment is <u>low</u> compared to P_{lake} and P_{import} .
- 2. P is accumulated in the monimolimnion (less P in the euphotic zone)
- 3. Anoxic conditions are of low importance for the whole P balance

Combining process studies and field measurements with modelling approaches

Lau, M., Valerio, G., Pilotti, M., Hupfer, M.: Meromictic waters store phosphorus better than sediments (MS draft).

Work in progress: Coupling of hydrophysical conditions with P fluxes

Movements of the redoxcline ("seiches"). Short term redox changes

Turbulence in the monimolimnion Gradients at the sediment surface

Monimolimnion as a trap for phosphorus Transport across the chemocline

Valerio[•] G., Pilotti, M., Hupfer, M., Lau, M.: Oxycline oscillations induced by internal waves in deep Lake Iseo (MS draft)

Outlook: Evaluation sediment profiles

Event stratigraphy (e.g. Ca precipitation)

Estimation of P retention

Proxies for oxygen situation

Pattern of elemental composition

April 2016

Outlook: Evaluation sediment profiles

Chemical Geology 352 (2013) 125-133

Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland

Sebastian Naeher^{a,b,*}, Adrian Gilli^c, Ryan P. North^{b,d}, Yvonne Hamann^c, Carsten J. Schubert^a

* Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters — Research and Management, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland

^b ETH Zurich, Institute for Biogeochemistry and Pollution Dynamics, Universitaetstrasse 16, CH-8092 Zurich, Switzerland

^c ETH Zurich, Geological Institute, Sonneggstrasse 5, CH-8092 Zurich, Switzerland

^d Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland

ARTICLE INFO

Article history:

Received 5 August 2012 Received in revised form 3 June 2013 Accepted 4 June 2013 Available online 14 June 2013

Editor: U. Brand

Keywords: Mn/Fe ratio Manganese Oxygen Redox XRF core scanning Lake Zurich

ABSTRACT

Redox dynamics of manganese (Mn) were studied in the sediment of Lake Zurich using precise sediment core age models, monthly long-term oxygen (O₂) monitoring data of the water column (1936–2010) and high-resolution XRF core scanning. The age models were based on bi-annual lamination and calcite precipitation cycles. If present, Mn exhibits distinct maxima, which coincide with the annual maximum deep-water O₂ concentrations in spring according to the monitoring data. In contrast, the iron (Fe) signal is mainly the result of calcite dilution, as indicated by a strong negative correlation between Fe and calcium (Ca) XRF data. The Mn/Fe ratio in the core from the maximum lake depth (ZH10-15, 137 m) revealed a moderate correlation with O₂ measurements in the lake bottom water confirming the successful application of the Mn/Fe ratio to semi-quantitatively reconstruct bottom water oxygenation in the lake. Mostly low ratios were observed between 1895 and the mid-1960s as a result of eutrophication. However, geochemical focusing and sedimentological factors can reduce the applicability of the Mn/Fe ratio in reconstructing O₂ concentrations in the bottom water of lakes.

© 2013 Elsevier B.V. All rights reserved.

	Sampling	Analysis	Evaluation
P forms (fractionation)			
Pore water			
Surface sediments transects			
Multi-Traps			
Sediment stratigraphy (long cores, 60 cm)			•
Lab core experiments			
P profiles in water			
Particles	•	•	

Completed

Projekt ISEO

Thanks to the IGB team

Sylvia Jordan

Maximillian Lau

Juliane Roth

Thomas Rossoll

Christiane Herzog

Tobias Goldhamme

New in the team

Stefano Simoncelli

Georgiy Kirillin

Robert Ladwig

Thank you!