Influence of Earth rotation on the transport in narrow lakes

Marina Amadori¹ S. Piccolroaz², H. Dijkstra² and M. Toffolon¹

¹Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy ²Institute for Marine and Atmospheric Research (IMAU), Utrecht University, Utrecht, The Netherlands.

GARDEN 2018

2st International Scientific Workshop Manerba del Garda, May 10, 2018

UNIVERSITÀ DI TRENTO

UNIVERSITÀ DEGLI STUDI DI BRESCIA

UNIVERSITÀ CATTOLICA del Sacro Cuore

Rocca di Manerba del Garda

RISERVA NATURALE PARCO LACUALE MUSEO ARCHEOLOGICO

Is Earth's rotation relevant in all water bodies?

Does it depend on...

WIDTH	TURBULENCE	
\rightarrow Rossby radius	CLOSURE	TIME SCALES
$Ro = \frac{U}{fB}$ HEIGHT $\rightarrow \text{Ekman depth}$ $D_E = \sqrt{\frac{2v_z}{H}}$	→constant/space ad time varying	TYPE OF PROCESS
		→ Period of external forcings (i.e. wind, inflows, tides)
	MIXING REGIME	
	→ Vertical eddy viscosity	
	ightarrow Horizontal eddy	TRANSIENCE
N	viscosity	→Spin up time (in
	ightarrow Density gradients	numerical simulations)

It is commonly assumed that Earth's rotation can be neglected in small enclosed basins

Is Earth's rotation relevant in all lakes?

• What does small mean?

"Rotational effects need to be taken into account when analyzing the circulation of lakes with <u>horizontal dimensions larger than</u> the **Rossby radius** of deformation R_o (...)" **Rueda F.J., and J. Vidal** (2010) *Currents in the Upper Mixed Layer and in Unstratified Water Bodies*. In: Biogeochemistry of Inland Waters

but also ...

"It is not so much <u>the horizontal extent of a basin</u>, but its depth which dictates whether the Earth's rotation affects the circulation of a water body" **K. Hutter** (2011) The Role of the Earth's Rotation: Fundamentals In: Physics of Lakes: V.2 Lakes as Ocillators

...and does it work for all processes?
 some sparks from recent works in narrow alpine lakes:

WIND INDUCED TRANSPORT

Piccolroaz et al. 2018, Importance of planetary rotation for ventilation processes in deep elongated lakes: Evidence from Lake Garda (Italy).

Amadori et al. 2018, Wind variability and Earth's rotation as drivers of transport in a deep, elongated subalpine lake: the case of Lake Garda.

RIVER PLUMES

Pilotti et al. 2018, Evidence from field measurements and satellite imaging of impact Earth rotation on Lake Iseo chemistry.

Earth's rotation and fluid motion

Where it all began...

V.W. Ekman PhD Thesis

On the influence of the Earth's rotation on <u>ocean-currents</u>. [Uppsala, 1905]

- 1. Wind stress and Coriolis force
- 2. Ekman transport
- 3. Ekman layer \rightarrow Ekman number
- 4. Ekman spiral

Many simplicative assumptions

- > Infinite depth
- > No pressure gradients
- Steady state
- Constant turbulence
- Constant density
- No lateral boundaries

V.W. Ekman, 1874–1954

ONTHE	
EA	RTH'S ROTATION
ON	DCEAN-CURRENTS
v	Walfrid Ekman
UN	VERSITY MICROFILMS, INC.

Equations of fluid motion *simplified RANS*

Momentum

$$\begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \int v - \frac{1}{\rho} \frac{\partial p}{\partial x} + v_z \frac{\partial^2 u}{\partial z^2} + v_h \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \int u - \frac{1}{\rho} \frac{\partial p}{\partial y} + v_z \frac{\partial^2 v}{\partial z^2} + v_h \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \\ p = p_0 + \rho g(\eta - z) \end{cases}$$

Assumptions

- 1. Vertical velocity: $w \ll u, v$
- 2. Anisotropic turbulence: $v_z \neq v_h$
- 3. Hydrostatic pressure

4. Coriolis acceleration:
$$\begin{cases} (2\underline{\Omega} \times \underline{u})_{\chi} \cong -fv\\ (2\underline{\Omega} \times \underline{u})_{y} \cong fu \end{cases}$$

5. Baroclinic effects neglected

Classical analytical solution - Ekman theory, 1905

Assumptions:

- 1. <u>Steady state</u>: $\frac{\partial}{\partial t} = 0$
- 2. <u>Non linear advection</u> neglected: $u_i \frac{\partial u_j}{\partial x_i} = 0$; 3. Horizontal turbulence neglected: $v_h \frac{\partial^2 u_j}{\partial^2 x_i} = 0$;

- Constant vertical eddy viscosity v_{z} ; 4.
- Infinite depth z 5.
- Pressure gradients neglected 6.
- Wind along y axis 7.

Boundary conditions

Surface (z = 0): wind shear stress

$$\begin{cases} \rho v_{z} \frac{\partial u}{\partial z} \Big|_{z=0} = \tau_{wind,x} \\ \rho v_{z} \frac{\partial v}{\partial z} \Big|_{z=0} = \tau_{wind,y} \end{cases}$$

Bottom (z = H/
$$\rightarrow \infty$$
):
no slip == vanishing velocity

$$u\Big|_{z\to\infty} = v\Big|_{z\to\infty} = 0$$

Lateral boundaries: commonly neglected assuming the solution to be far enough from boundaries

$$\begin{cases} 0 = fv + v_z \frac{\partial^2 u}{\partial z^2} \\ 0 = -fu + v_z \frac{\partial^2 v}{\partial z^2} \\ \frac{\partial p}{\partial x} = \frac{\partial p}{\partial y} = 0 \end{cases}$$

UNKNOWNS:

$$\begin{cases} \rho \\ \nu_z \\ \tau_{wind} \end{cases}$$

Classical analytical solution - Ekman theory, 1905

SOLUTION

$$u = V_0 \exp\left(\frac{z}{D_E}\right) \cos\left(\frac{\pi}{4} + \frac{z}{D_E}\right) \qquad D_E = \sqrt{\frac{2\nu_z}{f}} \quad \text{Ekman depth}$$
$$v = V_0 \exp\left(\frac{z}{D_E}\right) \sin\left(\frac{\pi}{4} + \frac{z}{D_E}\right) \qquad V_0 = \frac{\tau}{\rho\sqrt{\nu_z f}} \quad \text{scale of velocity}$$

EKMAN TRANSPORT

Infinite depth $q_x = \frac{\tau_{wind}}{\rho f}$

Successive solutions overcoming the simplified original assumptions:

- > Finite depth
- Geostrophic balance
- > Time dependency
- > Non-uniform turbulence
- Density stratification
- 2D 3D domains

Ekman type transport in a simplified box domain

A new analytical approach for the 1D problem

Differential problem for complex velocity

$$\nu_z \; \frac{\partial^2 W}{\partial^2 z} - ifW = gS$$

Vertical boundaries

$$\frac{\partial W}{\partial z}\Big|_{z=0} = \frac{T}{\rho v_z}$$
$$\frac{\partial W}{\partial z}\Big|_{z=-H} = 0$$

UNKNOWNS:

$$\begin{cases} W(z) = u(z) + iv(z) \\ S = \frac{\partial \eta}{\partial x} + i\frac{\partial \eta}{\partial y} \end{cases}$$

PARAMETERS:

$$\begin{cases} T = \tau_x + i\tau_x \\ \nu_z \end{cases}$$

Integral conditions for lateral boundaries

 $\int_0^H W(z)dz = 0$

Closed longitudinal and lateral circulation

Ekman type transport in a simplified box domain

Numerical simulations

Reference simulations

- H = 50 m
- B = 5 km

L = 50 km

 $v_z = 3.73 \times 10^{-2} \text{ m}^2/\text{s}$ $v_h = 1 \text{ m}^2/\text{s}$

ADDITIONAL SIMULATIONS

epth effect	
l1 = 10 m	
l2 = 30 m	
l3 = 100 m	
l4 = 300 m	
15 = 500 m	

Width effect B1 = 500 m $-v_h = 1 m^2/s$ $-v_h = 10 m^2/s$ $-v_h = HLES$ B2 = 1 km B3 = 2.5 km B4 = 10 km B5 = 25 km

vertical turbulence effect T1 = 5 x 10^{-3} m²/s T2 =1 x 10^{-2} m²/s T3 = 5 x 10^{-2} m²/s T4 = k-epsilon

All simulations performed with varying latidudes from 0°N to 90°N

Ekman type transport in a simplified box domain

From a simplified box domain to real lakes Lake Garda

Source: Amadori et al. 2018.

From a simplified box domain to real lakes Lake Garda

Source: Amadori et al. 2018

Conclusions & Future perspectives

- Theoretical demonstration of the relevence of Earth's rotation also in narrow lakes
- New analytical approach suitable for all lakes
- Observational and numerical evidences of Coriolis force effects in real lakes and in Lake Garda
- Challenging questions on its effective role in affecting transport and mixing dynamics in real lakes

References

Amadori et al. (2018), Wind variability and Earth's rotation as drivers of transport in a deep, elongated subalpine lake: the case of Lake Garda, in review for Journal of Limnology.

Ekman (1905), On the influence of the earth's rotation on ocean currents. Ark. Math. Astronomi Fys., 2 (11), 53.

Piccolroaz et al. (2018), Importance of planetary rotation for ventilation processes in deep elongated lakes: Evidence from Lake Garda (Italy), *in review for Geophysical Research Letters*

Pilotti et al. (2018), Evidence from field measurements and satellite imaging of impact Earth rotation on Lake Iseo chemistry, *Journal of Great Lakes Research*, 44, 14-25.

Toffolon (2013), Ekman circulation and downwelling in narrow lakes, , Adv. Water Resour., 53, 76-86.

Thanks for your attention!