

Smart drones for innovative water monitoring within the INTCATCH H2020 project

GARDEN – Lake GARDa ENvironmental System 2nd International Scientific Workshop

Manerba del Garda, 10 May 2018

Alessandro Farinelli

UNIVERSITÀ Dipartimento di VERONA di INFORMATICA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 689341

WHY ROBOTIC BOATS?

• Sensors deployed right place right time: effective decision making and management of local 'diffuse' pollution

• Data captured by local stakeholders *Citizen Science*

ROBOTICS FOR WATER MONITORING

HydroNet

ARC boats

Platypus

- Large, expensive small, low-cost
- Community engagement

NUSwan

2020

Development and application of Novel, Integrated Tools for monitoring and managing Catchments

AUTONOMOUS BOATS

in water propellers

airboat

real time data visualization

- Low-cost
- <u>Autonomous</u>
- Long-endurance
- Easy to deploy

WHY AUTONOMY?

Minimize human intervention

Facilitate data collection for non expert users

boat

2020

Development and application of Novel, Integrated Tools for monitoring and managing Catchments

SYSTEM ARCHITECTURE

- The boat can be controlled by a wi-fi connected tablet or a radio controller
- The user can define a path on the tablet that the boat follows, navigating autonomously
- Different sensors to measure
 - o electrical conductivity
 - o temperature
 - o dissolved oxygen

TEST DEPLOYMENT IN FISHING LAKE

- Pre-defined path loaded to the system
- Four hours in complete autonomy (one battery switch)
- Thanks to Atlandide Fishing

DEPLOYMENT IN RIVER TER (URBAN AREA)

Overall path length: about 1.3 km Flow was about 1m/s Thanks to UVIC team!

WIDE AREA MONITORING IN LAKE GARDA

https://www.youtube.com/watch?v=oLHaSqY-egE

INTEGRATED SAMPLING SYSTEM

Sample **based on data**:

- parameter above a given threshold
- significant change of parameter
- near a GPS position
- remote command

Weight sampling device: 3 kg (water filled 5 kg) Jars: four, 500 mL each

USING VISUAL INFORMATION FOR NAVIGATION

AUTONOMOUS DRIVING WITH COLLISION AVOIDANCE

WATER LINE DETECTION

VIDEO STABILIZATION

unstabilized

stabilized

02

https://www.youtube.com/watch?v=IYvgRZzBBuQ

WATER LINE DETECTION PIPELINE

(b) Waterline overlay on class mask edge pixels

2020

Development and application of Novel, Integrated Tools for monitoring and managing Catchments

DATASET

Data available at IntCatch AI - Deep Learning Water Segmentation http://profs.scienze.univr.it/~bloisi/intcatchai/seg.html

Source code available at https://github.com/lorenzosteccanella/Intcatch_Deep_Pixelwise_Segmentation

water vegetation

RESULTS

Ģ

00

https://youtu.be/2KHNZX7UIWQ

CHALLENGING SITUATIONS

The contour of a boat begins to appear and is classified correctly. RANSAC line sticks to dominant horizon line Waterline construct breaks down completely, motivating the use of a water contour

INTERESTING DIRECTIONS

BETTER AUTONOMY

- recognize situations (e.g., upstream/downbstream)
- plan in face of uncertainty (e.g., regulate speed to minimize battery usage)
- autonomous coastal navigation (based on vision)

ENHANCE DRONE EQUIPMENT

- DNA based analysis
- detecting microplastic

ENHANCE DATA VISUALIZATION

- integrate different source of information
- basic processing to better display data

Join forces to work towards integrated systems: joint measuring campaigns, calibrating remote sensing,

AI GROUP IN VERONA

Faculty Alessandro Farinelli Domenico Bloisi

PhD students Lorenzo Bottarelli Riccardo Sartea **Alumni** Filippo Bistaffa Masoume Raeissi

Post-Doc Alberto Castellini

Research Fellows Jason Blum Matteo Murari

INTCATCH people at UNIVR Alessandro Farinelli Jason Blum Domenico D. Bloisi

INTCATCH

UNIVERSITÀ Dipartimento di VERONA di INFORMATICA

2020

Special thanks to

Lega Navale Italiana Sezione Garda
Polizia di Stato

Smart drones for innovative water monitoring within the INTCATCH H2020 project

GARDEN – Lake GARDa ENvironmental System 2nd International Scientific Workshop

Manerba del Garda, 10 May 2018

Alessandro Farinelli

UNIVERSITÀ Dipartimento di VERONA di INFORMATICA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 689341

CNN ARCHITECTURE

Source code available at

https://github.com/lorenzosteccanella/Intcatch_Deep_Pixelwise_Segmentation

USER INTERFACE AND PATH CREATION

• The tablet app generates a spiral path to collect data in the area

DATA VISUALIZATION: MAP OVERLAY

• Dense geo-localized data for the different parameters

⁄26

