2nd GARDEN International Scientific Workshop

Possible effects of climate change on the mixing regime of Lake Maggiore and implications for its water quality

Andrea Fenocchi, Stefano Sibilla

Dept. of Civil Engineering and Architecture, University of Pavia, Pavia, Italy e-mail: <u>andrea.fenocchi@unipv.it</u>, <u>stefano.sibilla@unipv.it</u>

Claudia Dresti, Michela Rogora

CNR – Institute of Ecosystem Study, Verbania Pallanza, Italy e-mail: <u>c.dresti@ise.cnr.it</u>, <u>m.roqora@ise.cnr.it</u>

Manerba del Garda, 10th May 2018

DEEP SUBALPINE LAKES

CLIMATE CHANGE

NATURAL -> <u>NAO – North Atlantic Oscillation</u>

GLOBAL WARMING

ANTHROPOGENIC → <u>GHG EMISSIONS</u>

In the Alpine region, air temperature is rising <u>twice as fast than the global average</u> (Dokulil et al., 2010) $\longrightarrow \nabla T_w \approx 0.04 \text{ °C/year}$

LAKE HYDRODYNAMICS

COMPLETE-MIXING EVENTS 1990-2018:

• Lake Maggiore: 4

Lake Lugano: 1

• Lake Iseo: 2

DSL

Chemical gradients

1960s \longrightarrow *more frequent full turnovers (Ambrosetti and Barbanti, 1999)*

REASONS FOR OUR STUDY

- 1) <u>How</u> will the oligomictic behaviour of the DSL evolve?
- 2) Could a future decrease in GHG emissions revert the transition towards meromixis?
- 3) How will the chemistry and ecosystems of the DSL be influenced?

Fenocchi A., Rogora M., Sibilia S., Dresti C. (2017). Relevance of inflows on the thermodynamic structure and on the modeling of a deep subalpine lake (Lake Maggiore, Northern Italy/Southern Switzerland). Limnologica 63:42-56. DOI: 10.1016/j.limno.2017.01.006

Verzasc

regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland). Climate Dynamics (*available online*). DOI: 10.1007/s00382-018-4094-6

ADOPTED FUTURE METEOROLOGICAL SERIES

VG (Vector-Autoregressive Weather Generator; Schlabing et al., 2014) -> Generates random meteorological series

INPUT:

- 1) 1998-2015 meteorological observations -----> DEPENDENCE STRUCTURE
- 2) Alteration of $T_a \longrightarrow CH2011$

200

SIMULATED WATER WARMING

Evolution of T_w averaged over the 200 realisations:

(\longrightarrow Observed bottom warming 1956-2016: $\nabla T_w = +0.013 \text{ °C/year}$)

SIMULATED DECREASE OF COMPLETE-MIXING

Statistical distributions of minimum annual surface T_w and simultaneous bottom T_w over the 200 realisations:

EFFECTS OF GLOBAL WARMING ON THE THERMAL STRUCTURE

Evolution of the return period for complete-mixing over the 200 realisations:

NON-MITIGATION SCENARIOS:

RECOVERY OF COMPLETE-MIXING FREQUENCY

EFFECTS OF GLOBAL WARMING ON THE DSL

Lake Maggiore and the other DSL are ALREADY warming

Global GHG emissions dropped from ~2020 (RCP3PD):

1) Restricted water warming (maximum mean annual $\Delta T_{w} \approx +0.9$ °C for Lake Maggiore)

2) Recovery of oligomixis by the end of 21st century

Global GHG not addressed (A2) / reduced from ~2050 (A1B):

- **1)** Significant water warming (maximum mean annual $\Delta T_w \approx$ +4.6 °C for Lake Maggiore)
- 2) Pseudo-tropical meromixis for the coming centuries

What would happen to Lake Maggiore and how?

COUPLED ECOLOGICAL-HYDRODYNAMIC MODEL

Fenocchi A., Rogora M., Morabito G., Marchetto A., Sibilla S., Dresti C. (2018). Applicability of one-dimensional coupled ecological-hydrodynamic numerical models to future projections in very deep large lakes: extended calibration and validation on Lake Maggiore (Northern Italy/Southern Switzerland). Ecological Modelling (*under review*).

SIMULATED DEEP-WATER CHEMISTRY

<u>200 ÷ 370 m</u>		CAL	VAL	Literature
02	R	0.83	0.79	0.88 ± 0.05
	NMAE	5%	7%	19% ± 10%
PO ₄	R	0.61	0.70	0.60 ± 0.26
	NMAE	19%	12%	78% ± 27%

SIMULATED PHYTOPLANKTON SUCCESSION

2nd GARDEN International Scientific Workshop

Thank you for your attention

Andrea Fenocchi, Stefano Sibilla

Dept. of Civil Engineering and Architecture, University of Pavia, Pavia, Italy e-mail: <u>andrea.fenocchi@unipv.it</u>, <u>stefano.sibilla@unipv.it</u>

Claudia Dresti, Michela Rogora

CNR – *Institute of Ecosystem Study, Verbania Pallanza, Italy e-mail:* <u>c.dresti@ise.cnr.it</u>, <u>m.rogora@ise.cnr.it</u>

Manerba del Garda, 10th May 2018

AIR TEMPERATURE WARMING

$$\nabla T_a = +0.0397 \text{ °C/year} \longrightarrow \Delta T_a = +0.71 \text{ °C}$$

CH2011 mean annual gradients 1995-2025:

SIMULATED TRENDS OF METEOROLOGICAL VARIABLES

Statistical distributions of the 200 meteorological realisations from VG:

SIMULATED INCREASE OF STABILITY

Evolution of the thermal structure averaged over the 200 realisations:

Hypolimnion evolution is almost identical between mitigation and non-mitigation scenarios!

SIMULATED SURFACE WATER WARMING

Statistical distributions of surface T_w over the 200 realisations:

SIMULATED PHYTOPLANKTON SUCCESSION

COUPLED MODEL APPLICATION

WARNING: PROVISIONAL RESULTS!

TROPHIC STATUS

- As an effect of **decreasing nutrient loads**, Lake Maggiore underwent **oligotrophication** starting from the **1980s**
- TP values at winter turnover decreased from 30 ÷ 35 μg P L⁻¹ in the late 1970s to 9 ÷ 10 μg P L⁻¹

 A slight tendency towards increasing TP values has been observed in recent years (since 2010)

NITROGEN COMPOUNDS

- Concentrations of N compounds steadily increased since the 1950s
- Total **N** is mainly in the form of **NO**₃ (about **90%**)
- There is a high imbalance of N levels with respect to P (N:P molar ratio ≈ 150).

The main source of N to the lake is atmospheric deposition (60 ÷ 70%)

OXYGEN TREND

 The lack of complete turnover is causing oxygen decrease in the deep waters of the lake

• Hypolimnetic oxygen concentrations measured in late winter 2016 were the lowest since 1999

