GARDEN 2018 lake GARDa ENvironmental system

First observations of oxycline oscillations in Lake Iseo

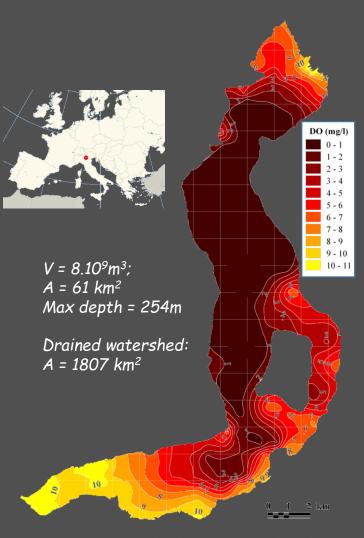
Giulia Valerio and Marco Pilotti

DICATAM, Università degli Studi di Brescia, via Branze 43, 25123 Brescia, Italy

e-mail: giulia.valerio@unibs.it Website: www.ing.unibs.it/hydraulics

10 May 2018 Manerba del Garda

1 – Motivations - eutrophy and oxygen deficit due to anthropogenic stressors

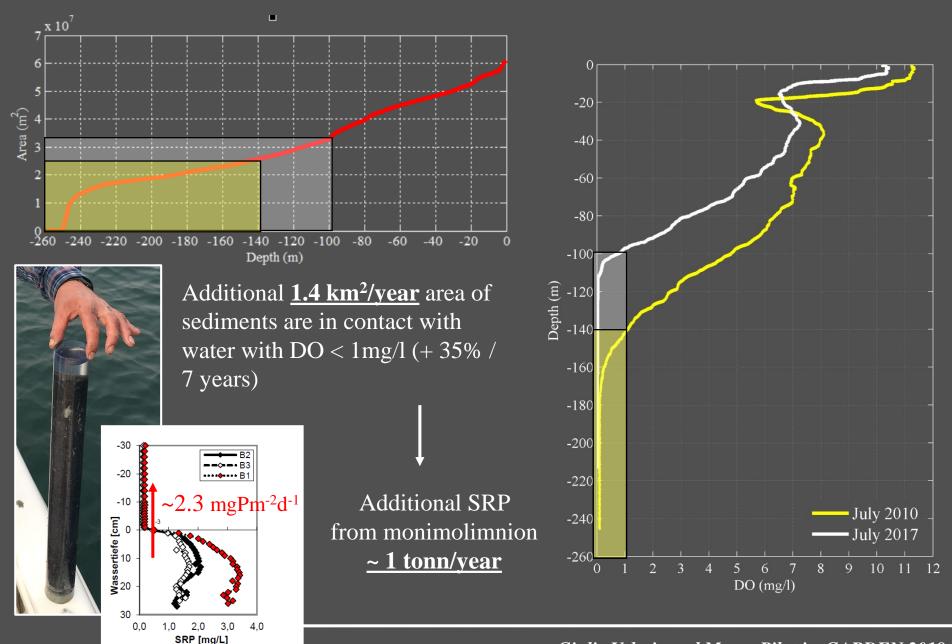

1967

Prof.	Temp. °C		mg O2/l		pH		Cond. µS 18 °C		µg P(PO₄′′′)/l	
m 	v	XI	v	XI	v	XI	v	XI	v	хі
0 5 10 20 30 60 100 150 200 245-7	13,1 11,1 9,4 8,3 7,5 6,0 5,85 5,75 5,75 5,75 5,75	$10.6 \\ 10,6 \\ 10,5 \\ 8,7 \\ 6,0 \\ 5,8 \\ 5,7 \\ 5,75$	11,9 12,2 12,0 10,9 10,6 10,0 9,7 9,5 9,1 8,2	10,1 10,2 10,3 10,4 8,3 9,3 9,1 9,0 8,5 7,8	8,46 8,40 8,30 8,11 7,93 7,91 7,92 7,82 7,88	8,15 	260 258 263 268 268 268 269 271 272 278	238 	1 0 0 3 6 1 30	0 1 1 6 4 8 12 15

Source: Bonomi and Geerletti (1967)

Depth (m)	Temp °C		mg O ₂ /I		Cond. 20° (µS/cm)		μg SRP/I		μg TP/I	
	IV	Х	IV	Х	IV	Х	IV	Х	IV	Х
0	12.0	17.4	11.0	10.1	248	254	5	5	10	10
25	7.8	9.9	11.1	6.0	226	240	6	3	10	10
50	7.2	6.7	7.3	4.5	230	244	17	17	19	17
150	6.5	6.6	0.1	0.1	248	248	98	99	104	101
200	6.5	6.6	0.1	0.1	250	250	105	101	106	102
250	6.5	6.6	0.1	0.1	252	253	112	125	112	122

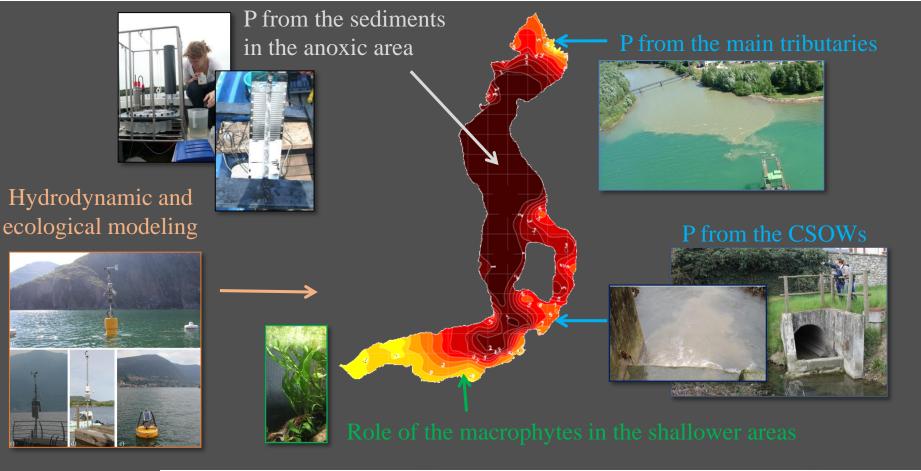
Data measured by Dr. Michael Hupfer (IGB)



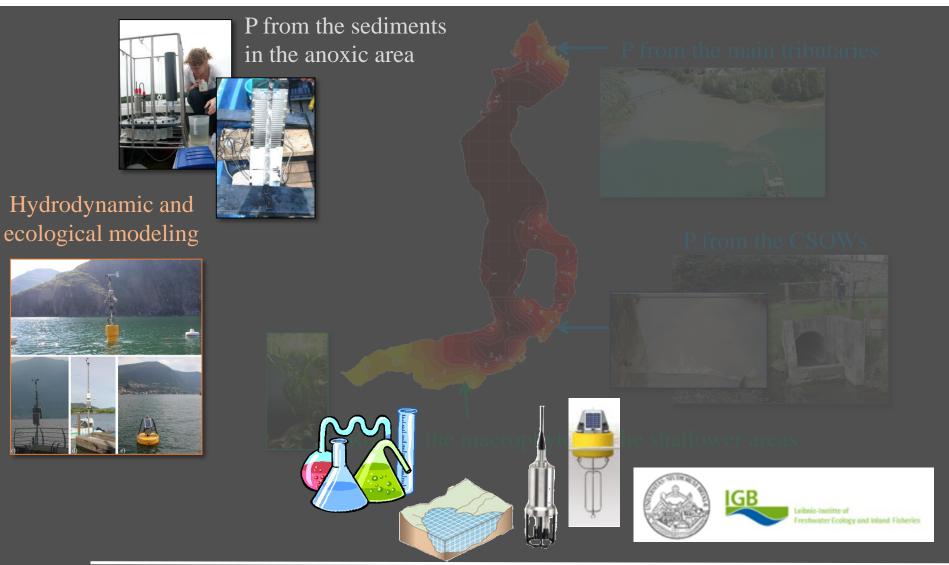
Dissolved oxygen measured in the 10m of water above the sediments July 2012

Giulia Valerio and Marco Pilotti – GARDEN 2018

2016

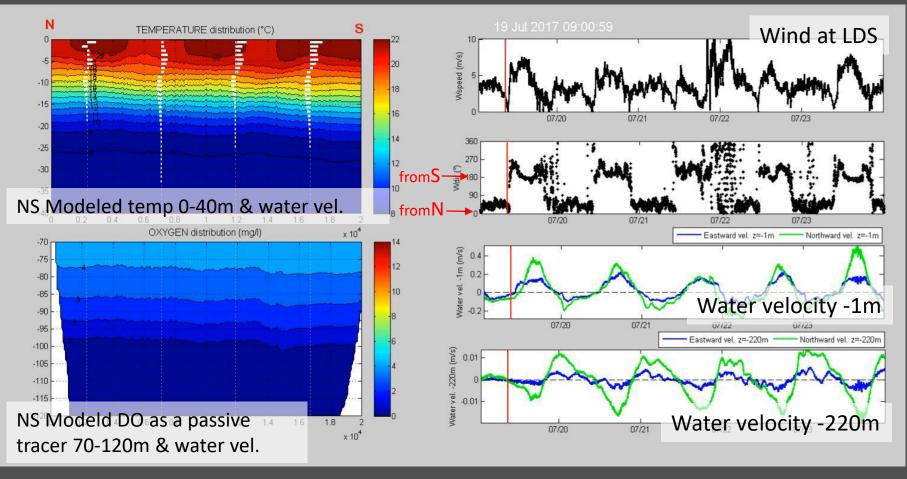

1 – Motivations - progressive deoxygenation favoured by climate change

Giulia Valerio and Marco Pilotti – GARDEN 2018


1 – Motivations – ISEO project (2016-2019)

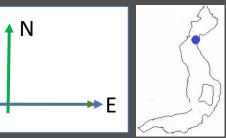
General objective: quantitative assessment of local pressures on the overall P load to clarify how effective will external nutrient load reductions be on the trophic evolution of Lake Iseo.

Specific sub-objective: what are the effects of the internal waves on the release of the P from the sediments in the monimolimnion?


2 – Internal waves - theory

Lake model in the laboratory (V1H1)

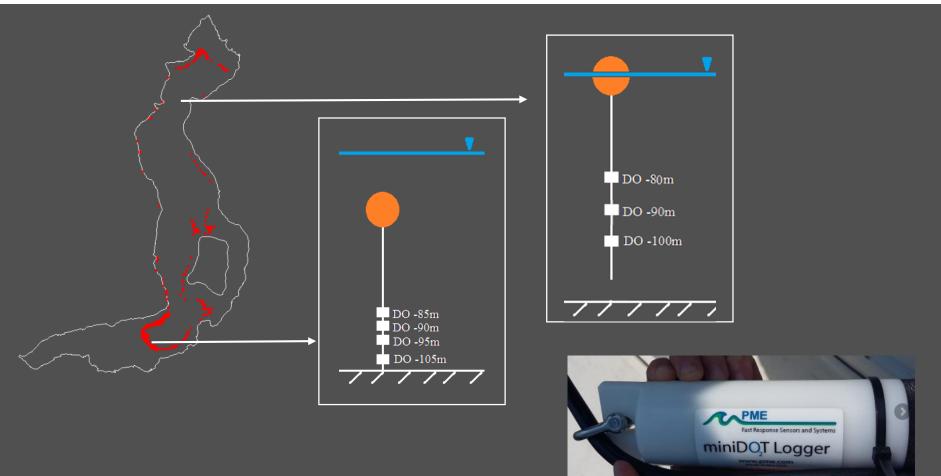
$$T = \frac{L}{\sqrt{g \frac{\rho_2 - \rho_1}{\rho_2} \frac{h_2 h_1}{h_2 + h_1}}} = 30s$$


2 – Internal waves - model

At the bottom:

- > alternating bottom currents
- alternating REDOX conditions around the oxycline

• Temporal variations of the redox conditions across the oxycline

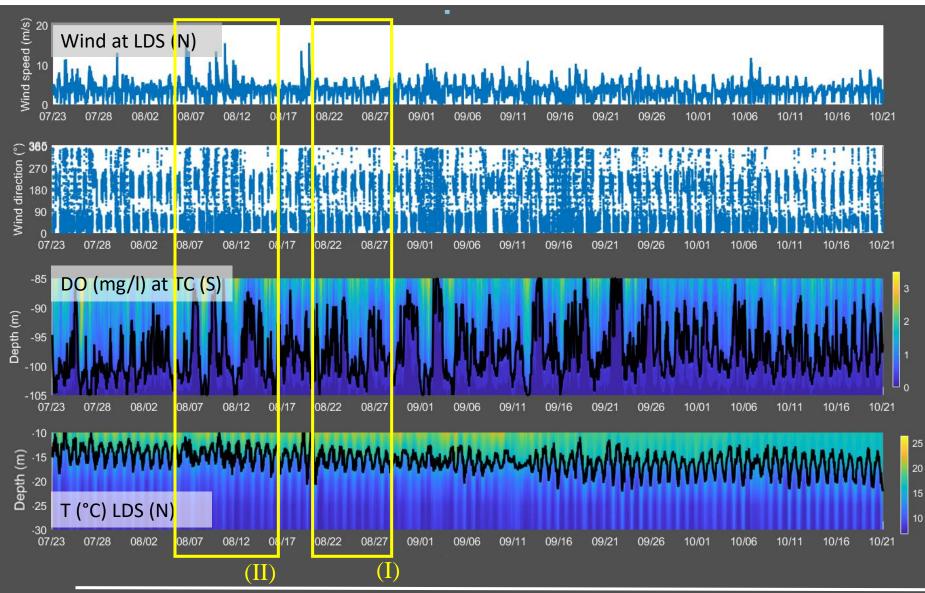


See e.g. Bryant et al. 2010 L&O Hupfer et al. 2007 Aquat Microb Ecol

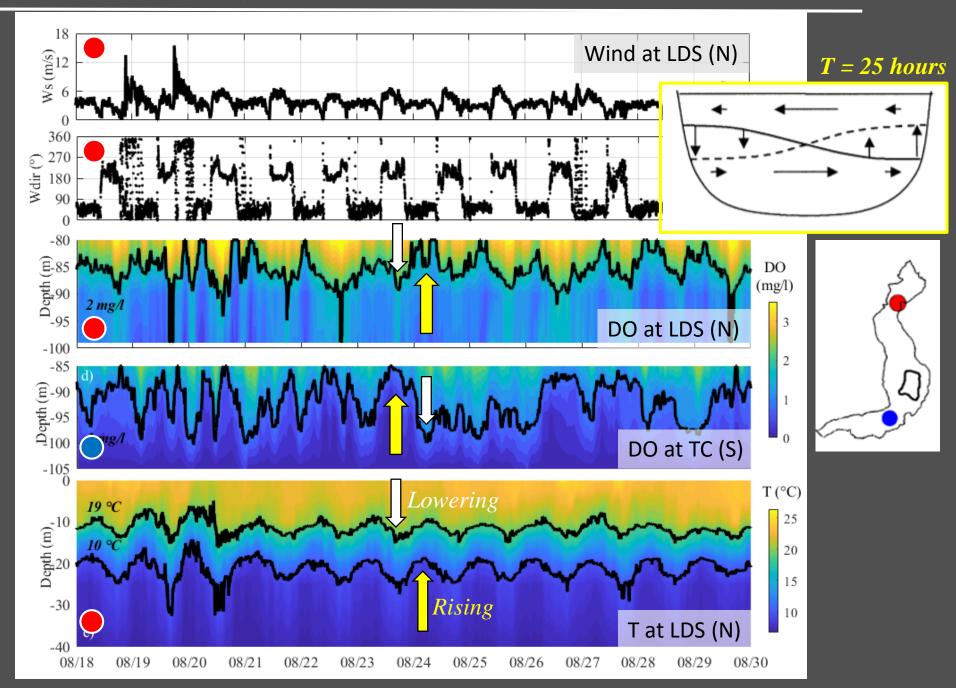
Fluctuating redox conditions could imply:

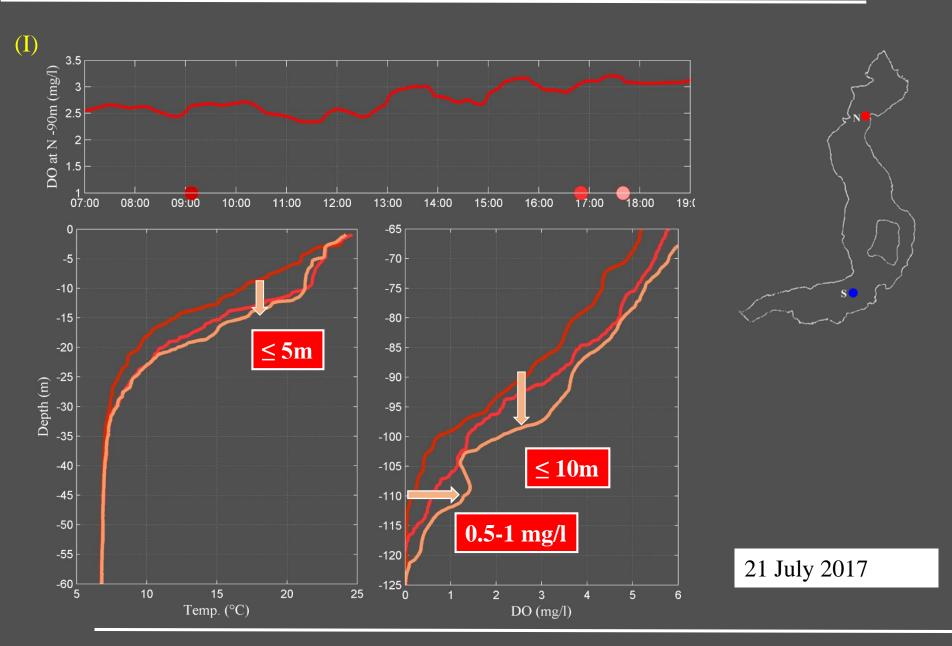
- Oxic conditions: higher mineralisation of organic bound P and temporary fixation at FeOOH
- Anoxic conditions: strong release of P due to reductive dissolution of Fe(III)

• Monitoring oxygen just above the sediments and at the same depths in the northern chain



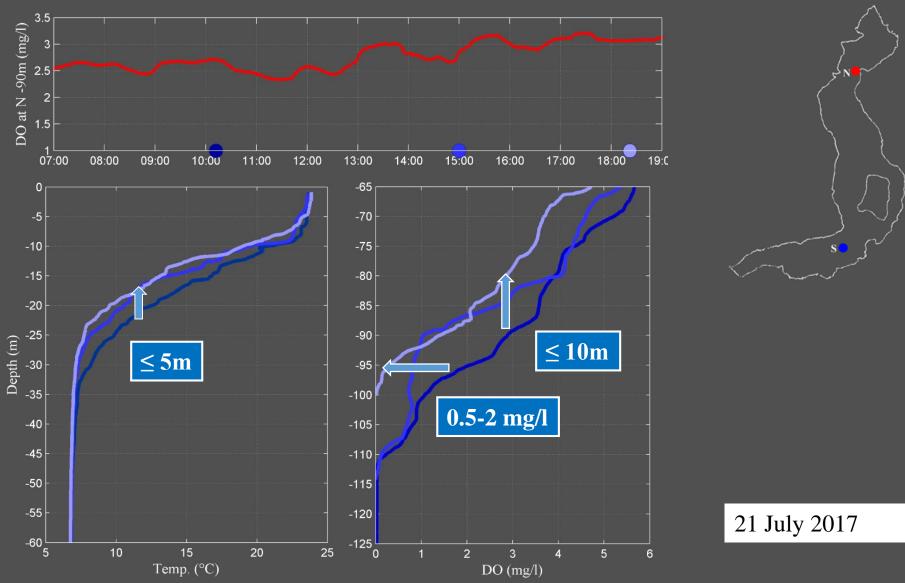
Real-time data available at:

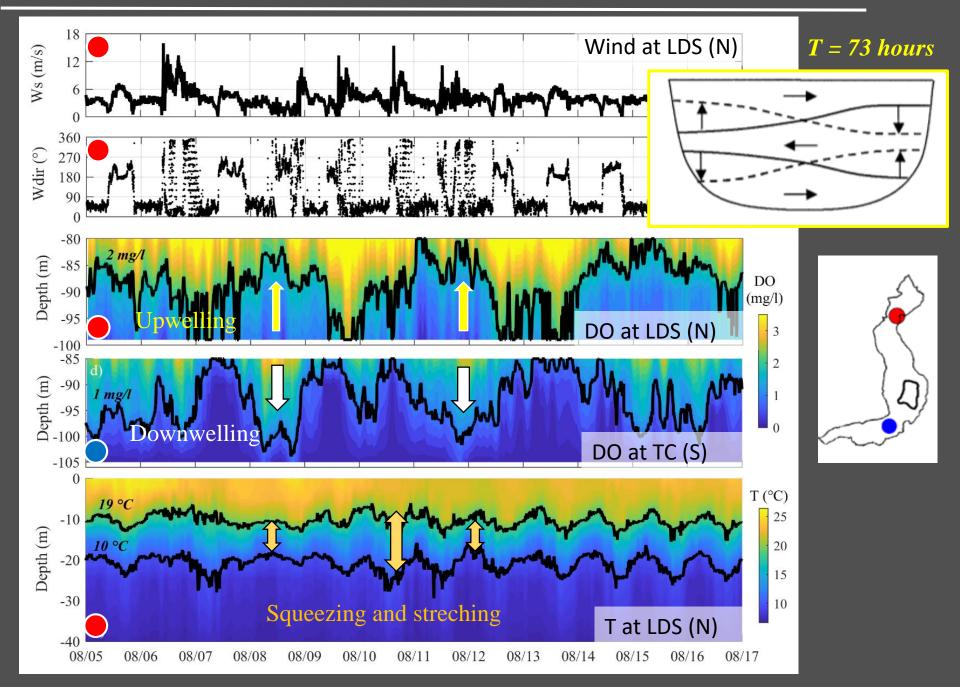

http://hydraulics.unibs.it/hydraulics/il-monitoraggio-del-lago-diseo/real-time-data-from-lake-monitoringsystem/


4 – Field observations

Dominant V1H1 mode in resonance with the wind and occasional V2H1 by long-lasting wind

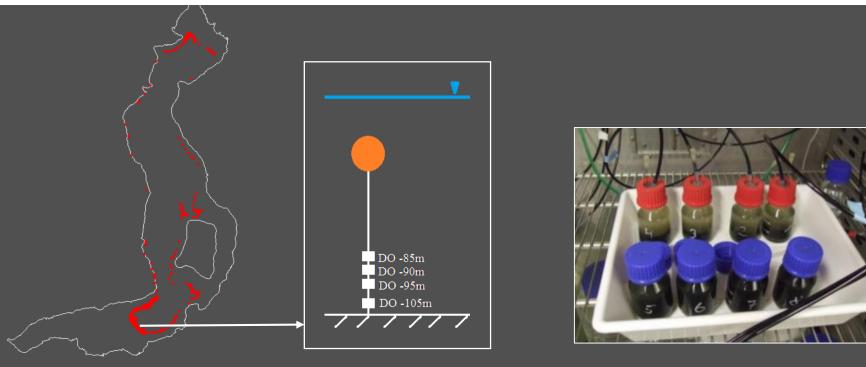
4 – Field observations (1)




3 – Internal waves in Lake Iseo – measurements

4 – Field observations (1)

(I)



4 – Field observations (II)

5 – Conclusions and future work

We estimated about 2 km² with 1-3 days intermittent redox conditions, and identified maximum redox changes in correspondence of the excitation of V2H1 motions.

- Planning specific lab. experiments to quantify the effects of the alternation of the redox conditions on the P fluxes
- Quantifing the effect of the V1H1 velocity field in the monimolimnion on the thickness of the diffusive boundary layer

GARDEN 2018 lake GARDa ENvironmental system

e-mail: giulia.valerio@unibs.it Website: www.ing.unibs.it/hydraulics

